С какой целью применяется умножитель частоты. Схема умножителей частоты

Умножителем частоты называют такой ГВВ, частота колеба­ний, на выходе которого в 2, 3,..., п раз выше, чем на входе.

Схема умножителя частоты аналогична схеме обычного усили­теля радиочастоты. Умножитель отличается от усилителя тем, что выходной контур умножителя настроен на вторую, третью или п-ю гармонику входного напряжения. Поэтому на нагрузке выде­ляется мощность той гармоники, на которую настроен выходной контур.

Из анализа режима колебаний второго рода известно, что с увеличением номера гармоники амплитуда гармонических состав­ляющих уменьшается: I n =α n , Imах- Поэтому полезная мощность и КПД умножителя меньше, чем усилителя. Режим умножения применяют в маломощных ступенях передатчика, низкий КПД ко­торых практически не снижает КПД передатчика в делом.

Принцип построения транзисторных умножителей частоты основан на использовании двух физических процессов: выделения нужной гармоники из импульса коллекторного тока и нелинейно­го характера изменения коллекторной емкости от изменения кол­лекторного напряжения.

Транзисторные умножители частоты, работающие на принципе выделения нужной гармоники из импульса, обеспечивают умно­жение на сравнительно низких частотах. Это происходит потому, что с повышением рабочей частоты импульс коллекторного тока расширяется (вплоть до 180°) и содержание высших гармоник в нем резко снижается. Практически умножители на этом принци­пе работают на частотах до 0,3 Ѡ т.

Для умножения на более высоких частотах используется нели­нейность коллекторной емкости. Это позволяет получить на выхо­де умножителя частоту больше граничной частоты транзистора. На рис. 2.12 приведена схема транзисторного умножителя частоты, работающего как на низких, так и на высоких частотах. На вход схемы подается напряжение основной частоты, на кото­рую настроен контур в цепи базы транзистора. В цепи коллекто­ра включены фильтры, выделяющие на нагрузке заданную гармо­нику.

Транзисторные генераторы работают на частотах до 10 ГГц. Для получения мощности на более высоких частотах после транзисторного генератора включают умножители частоты на по­лупроводниковых диодах - варикапах и варакторах.

В полупроводниковых приборах емкость р-n-перехода скла­дывается из двух составляющих: барьерной (1) -основной при закрытом переходе и диффузионной (2) - основной при открытом переходе.

Графики зависимости емкостей р-n-перехода от напряжения на нем показаны на рис. 2.13. Кривая 3 отражает результирую­щую емкость р-n-перехода. Для работы умножителя на харак­теристике C рез =f(U) выбирают рабочую точку А, подавая соот­ветствующее напряжение смещения.



Диоды, предназначенные для работы в режиме малых по сравнению с напряжением смещения амплитуд, называют варика­пами. Свойства варикапа определяются свойствами только барь­ерной емкости запертого перехода.

Диоды, предназначенные для работы при больших амплитудах, называют варакторами. В варакторных умножителях работа про­исходит как в области закрытого, так и в области открытого пе­рехода.

Принцип работы варакторного умножителя частоты основан на использовании нелинейности емкости р-n-перехода. При подаче на р-n-переход гармонического напряжения ток через переход будет негармонический (рис. 2.13,6). В составе такого тока име­ются высшие гармонические составляющие. Использование обла­сти открытого р-n-перехода приводит к увеличению уровня выс­ших гармоник.

В схему умножителя варактор можно включать как параллель­но (рис. 2.14,а), так и последовательно (рис. 2.14,6). Контур входной цепи умножителя настроен на основную частоту, а кон­тур выходной цепи - на вторую или третью гармонику. Такой умножитель частоты является пассивным, так как энергия выходных колебаний на частоте гно определяется энергией только одно­го источника входного напряжения с частотой со.

Достоинством параллельной схемы умножителя является то, что один вывод варактора в ней находится под нулевым потенци­алом. Это дает возможность разместить варактор на большом радиаторе и улучшить тепловой режим, а значит повысить полез­ную мощность.

Последовательная схема (рис. 2.14,6) обеспечивает лучшую устойчивость работы, поскольку индуктивности выводов и емкость корпуса входят в состав колебательной системы умножителя. Но в этой схеме усложняются условия теплоотвода.

Наилучшая эффективность преобразования мощности в варакторе достигается подбором оптимального значения напряжения смещения, соответствующего определенному значению входного напряжения. При изменении амплитуды входного напряжения из­меняется и эффективность преобразования.

Автоматическое смещение обеспечивает изменение напряжения смещения при изменении входного напряжения, сохраняя таким образом оптимальную эффективность преобразования.

Варакторные умножители частоты используют для двух- или трехкратного умножения частоты. Для получения умножения большей кратности соединяют последовательно несколько удвои­телей или утроителей.

2.10. Схемы соединения транзисторных генераторов

Для увеличения выходной мощности ГВВ включают парал­лельно или последовательно несколько транзисторов для работы на одну общую нагрузку.

При параллельном включении транзисторов для работы на одну общую нагрузку одноименные электроды транзисторов соеди­няют между собой параллельно. При этом токи отдельных транзи­сторов в общем проводе складываются и в выходном контуре вы­деляется суммарная мощность.

Соединяемые параллельно транзисторы должны иметь одинако­вые параметры, иначе один из транзисторов будет шунтировать другой транзистор и нагрузку. Значительный разброс параметров транзисторов приводит к необходимости применять дополнитель­ные схемные решения, вы­равнивания режимов рабо­ты отдельных транзисторов. Однако это приводит к ус­ложнению схемы, а следо­вательно снижает надеж­ность ее работы. Поэтому ограничиваются включени­ем не более двух-трех транзисторов параллельно.

Вследствие сложности настройки и снижения на­дежности схемы с парал­лельным включением тран­зисторов применяются ред­ко.

Двухтактные генераторы малой мощности (десятки ватт) на частотах 1 -10 МГц можно выполнять на трансформаторах с маг­нитной связью, как показано на рис. 2.15. Транзисторы в этой схе­ме работают в режиме класса В, т. е. с углом отсечки 0 = 90°. При подаче на вход переменного напряжения возбуждения в це­пях коллекторов импульсы коллекторных токов сдвинуты по фазе на 180°. По току первой гармоники транзисторы оказываются сое­диненными последовательно.

VT1 проте­кает от коллектора VT1 через транзистор VT1, затем участок эмиттер - коллектор транзистора VT2, через нагрузку Т2 к кол­лектору транзистора VT1.

Коллекторный ток первой гармоники транзистора VT2 проте­кает от коллектора VT2 через участок коллектор - эмиттер VT2, через эмиттер - коллектор VT1, через нагрузку и к коллектору VT2.

Через нагрузку Т2 коллекторные токи первой гармоники про­текают в одном направлении и поэтому суммируются. В общем проводе питания токи первой гармоники направлены навстречу и взаимно компенсируются.

На выходе этой схемы при хорошей ее симметрии высшие гар­моники отсутствуют, так как четные гармоники коллекторных то­ков обоих транзисторов в выходном трансформаторе компенсиру­ются, а нечетные гармоники в импульсах с отсечкой 0 = 90° прак­тически отсутствуют.

2.11. Схемы выходных каскадов радиопередатчиков

Созданные генератором колебания радиочастоты передаются в антенну для излучения. Для этого антенна передатчика должна быть связана с выходным контуром последнего каскада передат­чика. Нагруженный антенной каскад называется выходным. Вы­ходной каскад передатчика является наиболее мощным каскадом и отбирает наибольшую часть энергии от источников питания. По­этому энергетические показатели выходного каскада в основном определяют энергетические показатели передатчика в целом. Сле­довательно, выходной каскад должен иметь по возможности боль­ший КПД. Кроме того, выходной каскад работает в режиме коле­баний второго рода, « высшие гармонические составляющие тока выходной его цепи могут передаваться в антенну и излучаться ею, создавая помехи другим радиостанциям. Для устранения этого выходной каскад должен обеспечивать достаточно хорошую филь­трацию гармоник.

Режим работы и энергетические показатели выходного каска­да зависят от электрических параметров антенны и способа связи ее с выходной цепью генератора.

В зависимости от способа подключения антенны различают две схемы выхода - простую и сложную.

Простая схема выхода - это такая схема, в которой антенна непосредственно включается в выходной контур генератора, как показано на рис. 2.16, а. В этой схеме антенна вместе с элемен­тами настройки и связи входит в состав выходного контура, яв­ляющегося нагрузкой генератора. Выходной контур здесь называют антенным. Он должен быть настроен на заданную частоту и иметь сопротивление, равное оптимальному эквивалентному со­противлению нагрузки генератора.

Известно, что наиболее полная передача колебательной мощ­ности в антенну происходит при согласовании входного сопротив­ления антенны с выходным сопротивлением генератора. В простой схеме антенный контур настраивают на заданную частоту с по­мощью катушки настройки L н, а сопротивление нагрузки подбира­ют, изменяя индуктивность или емкость связи.

Если передатчик работает на одной фиксированной волне, то условия осуществления наиболее выгодного режима генератора и наиболее полной передачи энергии в антенну достигаются следую­щим образом. Сначала настраивают антенный контур на рабочую частоту генератора, а потом, не меняя параметров настройки контура, подбирают значение эквивалентного сопротивления кон­тура для обеспечения оптимального режима работы генератора.

При непосредственном подключении антенны в выходную цепь генератора энергия в антенну передается наиболее полно и этим достигается более высокий КПД генератора, что является до­стоинством простой схемы выхода.

Недостаток простой схемы - низкая фильтрация гармоник и ненадежная работа при обрывах антенны. При обрыве антенны сопротивление нагрузки уменьшается и генератор может оказать­ся в недонапряженном режиме. При этом потери мощности на электронном приборе могут превысить допустимые и разрушить прибор.

В сложной схеме выхода в выходной цепи генератора имеется два контура (рис. 2.16,6). Один из них включается непосредствен­но в выходную цепь генератора и называется промежуточным. Второй контур создается элементами антенны и называется ан­тенным. Оба контура настроены на рабочую частоту генератора. Оптимальное сопротивление нагрузки в сложной схеме выбирает­ся подбором связи промежуточного контура с антенным (методом последовательного приближения).

Достоинством сложной схемы является лучшая фильтрация гармоник. Кроме того, сложная схема более надежна, так как при обрыве антенны генератор переходит в перенапряженный режим и потери мощности на нагрев электронного прибора уменьшаются. Недостаток сложной схемы - низкий кпд из-за потерь энергии на элементах связи и промежуточного контура.

Сложная схема выхода используется в передатчиках большой и средней мощности, в которых большое значение имеет лучшая фильтрация гармоник и допускаются большие габаритные разме­ры схемы и ее сложность.

В маломощных передатчиках связи, для которых малые их га­баритные размеры, масса и простота схемы, а также экономич­ность имеют решающее значение, применяется простая схема вы­хода.

Для контроля режима работы электронного прибора и настройки контура в резонанс в выходной каскад передатчика включают прибор для измерения токов в выходной и входной цепях генератора.

Глава 3. АВТОГЕНЕРАТОРЫ

3.1. Принцип самовозбуждения

Для создания колебаний радиочастоты в радиопередающих устройствах используется явление возникновения электрических колебаний в колебательном контуре, в который вводится некото­рое количество энергии извне, т. е. первоисточником электрических колебаний в радиопередающих устройствах служит колебатель­ный контур.

Если в электрический контур LC ввести некоторое количество энергии извне, например путем заряда конденсатора С, то в кон­туре возникают свободные затухающие колебания радиочастоты.

Чтобы колебания были незатухающими, т. е. амплитуда их не уменьшалась, необходимо периодически, в такт со свободными колебаниями, пополнять энергию в контуре. Это можно осущест­вить периодически, подключая к контуру источник ЭДС, который будет подзаряжать конденсатор контура. Когда количество энер­гии, поступающей в контур, будет достаточным для компенсации всех потерь энергии в нем, колебания в контуре будут незату­хающими.

Для создания в контуре незатухающих колебаний пополнять энергию необходимо один раз за период. А так как частота коле­баний высокая (сотни и тысячи килогерц), то подключать источ­ник электрической энергии к контуру для пополнения энергии в нем может только специальный быстродействующий прибор - электронная лампа или транзистор.

Чтобы пополнения энергии поступали в контур в такт со сво­бодными колебаниями (с его собственными колебаниями), необ­ходимо, чтобы сами колебания управляли током источника пита­ния. Для этого в схеме генератора имеется обратная связь (ОС) выходной цепи со входной. Таким образом, генератор с самовоз­буждением состоит из колебательного контура, электронного при­бора, источника питания и элементов положительной обратной связи. /

В колебательном контуре выделяется энергия создаваемых колебаний, частота которых определяется параметрами контура L и C. Электронный прибор выполняет роль регулятора расхода энергии источника питания. Элементами обратной связи могут быть катушка индуктивности или конденсатор. Источник питания пополняет энергию в контуре. Таким образом, генератор с самовозбуждением является

_____________________________________________________________

Рис.3.1. структурная схема автогенератора

1-цепь ОС; 2-усилительный элемент; 3-колебательный контур;

4-источник питания.

устройством, которое создает колебания радиочастоты с помощью колебательного контура и элементов обратной связи. А так как колебания в таком генераторе возникают автоматически, сразу после включения источников питания, то он называется автогенера­тором (рис. 3.1).

1. Назначение, принцип действия и основные параметры

Умножители частоты в структурной схеме радиопередатчика (см. рис. 2.1) располагаются перед усилителями мощности ВЧ или СВЧ колебаний, повышая в требуемое число раз частоту сигнала возбудителя. Умножители частоты могут также входить в состав и самого возбудителя или синтезатора частот. Для входного и выходного сигнала умножителя частоты запишем:

где n - коэффициент умножения частоты в целое число раз.

Классификация умножителей частоты возможна по двум основным признакам: принципу действия, или способу реализации функции (17.1), и типу нелинейного элемента. По принципу действия умножители подразделяют на два вида: основанные на синхронизации частоты автогенератора внешним сигналом (см. разд. 10.3), в п раз меньшим по частоте (рис. 17.1,а), и с применением нелинейного элемента, искажающего входной синусоидальный сигнал, и выделением из полученного многочастотного спектра требуемой гармоники (рис. 17.1,б).

Рис. .1. Умножители частоты

По типу используемого нелинейного элемента умножители частоты второго вида подразделяют на транзисторные и диодные.

Основными параметрами умножителя частоты являются: коэффициент умножения по частоте n; выходная мощность n-й гармоники Р n , входная мощность 1-й гармоники Р 1 , коэффициент преобразования К пр =Р n /Р 1 ; коэффициент полезного действия =Р n /Р 0 (в случае транзисторного умножителя), уровень подавления побочных составляющих.

Недостаток умножителей частоты (рис. 17.1, а) первого вида состоит в сужении полосы синхронизма с увеличением номера гармоники п. У умножителей частоты второго вида уменьшается коэффициент преобразования К пр с повышением п. Поэтому обычно ограничиваются значением n = 2 или 3 и при необходимости включают последовательно несколько умножителей частоты, чередуя их с усилителями.

2. Транзисторный умножитель частоты

Схема транзисторного умножителя частоты (рис. 17.2) и методика его расчета практически ничем не отличаются от усилителя.

Необходимо только выходную цепь генератора настроить на n-ю гармонику и выбрать значение угла отсечки =120/n, соответствующее максимальному значению коэффициента  n (). При расчете выходной цепи коэффициент разложения косинусоидального импульса по 1-й гармонике  1 () следует заменить на коэффициент по n-й гармонике  n (). Контур в выходной цепи, настроенный в резонанс с n-и гармоникой сигнала, должен обладать удовлетворительными фильтрующими свойствами.

Рис. 17.2. Схема транзисторного умножителя частоты

Коэффициент умножения схемы на рис. 17.2 обычно не превышает 3–4 раз при КПД, равном 10–20%.

3. Диодные умножители частоты

Работа диодных умножителей частоты основана на использовании эффекта нелинейной емкости. В качестве последней используется барьерная емкость обратно смещенного р-n-перехода. Полупроводниковые диоды, специально разработанные для умножения частоты, называются варакторами. При =0,5 и  0 =0,5 В для нелинейной емкости варактора получим:

, (2)

где и - обратное напряжение, приложенное к p-n-переходу.

График нелинейной функции (17.2) показан на рис. 17.3.

Рис. 17.3. График нелинейной функции

Заряд, накапливаемый нелинейной емкостью, с напряжением и током связаны зависимостями:

, (3)

Две основные схемы диодных умножителей частоты с варакторами приведены на рис. 17.4.

Рис. 17.4. Диодные умножители частоты с варакторами

В схеме диодного умножителя параллельного вида (рис. 17.4, а) имеются два контура (или фильтра) последовательного типа, настроенные в резонанс соответственно с частотой входного  и выходного n сигналов. Такие контуры имеют малое сопротивление на резонансной частоте и большое - на всех остальных (рис. 17.5).

Рис. 17.5.Зависимость сопротивления контура от частоты

Поэтому первый контур, настроенный в резонанс с частотой входного сигнала о, пропускает только 1-ю гармонику тока, а второй контур, настроенный в резонанс с частотой выходного сигнала n, - только n-ю гармонику. В результате ток, протекающий через варактор, имеет вид:

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при токе (17.4) напряжение на варакторе отлично от синусоидальной формы и содержит гармоники.

Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку.

Таким образом, с помощью нелинейной емкости в устройстве происходит преобразование мощности сигнала с частотой  в сигнал с частотой n, т.е. умножение частоты.

Аналогичным образом работает вторая схема умножителя частоты последовательного вида (рис. 17.4, б), в которой имеется два контура (или фильтра) параллельного типа, настроенные в резонанс соответственно с частотой входного  и выходного n сигналов. Такие контуры имеют большое сопротивление на резонансной частоте и малое - на всех остальных. Поэтому напряжение на первом контуре, настроенном в резонанс с частотой входного сигнала , содержит только 1-ю гармонику, а на втором контуре, настроенном в резонанс с частотой выходного сигнала n, - только n-ю гармонику. В результате напряжение, приложенное к варактору, имеет вид:

где U 0 - постоянное напряжение смещения на варакторе.

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при напряжении (17.5) ток, протекающий через варактор, отличен от синусоидальной формы и содержит гармоники. Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку. Таким образом, с помощью нелинейной емкости в схеме происходит преобразование мощности сигнала с частотой  в сигнал с частотой n, т.е. умножение частоты.

Варакторные умножители частоты в ДЦВ диапазоне при n=2 и 3 имеют высокий коэффициент преобразования К пр =P n /P 1 =0,6…0,7. При больших величинах п в СВЧ диапазоне значение К пр уменьшается до 0,1 и ниже.

1. Введение

2. Обзор методов решения аналогичных задач

3. Выбор обоснования и предварительный расчёт структурной схемы

4. Описание принципа работы структурной схемы

5. Описание схемы электрической и электрический расчёт

6. Расчёт на ЭВМ

7. Заключение

8. Список литературы

9. Перечень элементов к электрической схеме

1. Введение

Умножители частоты, или как их называют в более развернутом виде, системы формирования дискретного множества частот, в настоящее время получили очень широкое распространение в самых разнообразных видах радиоэлектронной аппаратуры.

Индукционные печи с токами высокой частоты, радиосвязные, радионавигационные и радиолокационные системы, схемы подавления помех, системы управления скоростью двигателя – вот далеко не полный перечень областей применения умножителей частоты.

Появление первых разработок умножителей частоты относится к 30-м и 40-м годам XX века.

В электротехнике и электронике умножителем частоты называется радиоэлектронное устройство, предназначенное для увеличения в целое число раз N частоты подводимых к нему периодических электрических колебаний в заданном диапазоне частот с требуемой стабильностью и качеством выходного сигнала.

Основной параметр – коэффициент умножения частоты N , определяемый как отношение частоты выходного сигнала к частоте входного:

Характерной особенностью умножителей частоты является постоянство N при изменении (в некоторой конечной области) частоты входного сигнала, а также параметров самого умножителя (например, резонансных частот колебательных контуров или резонаторов, входящих в состав умножителя частоты), т.е. в умножителе частоты относительная нестабильность частоты колебаний при умножении остается постоянной. Это важное свойство позволяет использовать умножители частоты для повышения частоты стабильных колебаний в различных радиопередающих, радиолокационных, измерительных и других установках; при этом N может достигать 10 и более.

Основная проблема при конструировании умножителей частоты – это уменьшение фазовой нестабильности входных колебаний (обусловленной случайным характером изменения их фазы), которая приводит к увеличению относительной нестабильности частоты на выходе по сравнению с соответствующей величиной на входе.

Наиболее распространены умножители частоты, состоящие из нелинейного устройства (например, транзистора, варикапа, катушки с ферритовым сердечником) и одного или нескольких электрических фильтров. Нелинейное устройство изменяет форму входных колебаний, вследствие чего в спектре колебаний на его выходе появляются составляющие с частотами, кратными входной частоте. Эти сложные колебания поступают на вход фильтра, который выделяет составляющую с заданной частотой , подавляя (не пропуская) остальные. Такие устройства применяются для умножения частоты гармонических колебаний.

Находят применение также умножители частоты, действие которых основано на синхронизации колебаний автогенератора. В таких приборах возбуждаются колебания с частотой , которая становится в точности равной под действием поступающих на вход колебаний с частотой . Недостатком этих умножителей частоты является сравнительно узкая полоса значений , при которых возможна синхронизация.

Также, в отличие от обычных умножителей частоты умножители на фазовращателях могут обеспечить спектрально чистый, не требующий фильтрации выходной сигнал. Используя для расщепления фазы широкополосные фазово-разностные цепи, можно реализовать частотно-независимые умножители, работающие в диапазоне, который перекрывает множество октав.

В настоящее время выявились следующие основные методы построения умножителей частоты:

косвенный на базе систем импульсно-фазовой автоподстройки частоты (ИФАПЧ);

прямой с использованием фильтрующих элементов на поверхностно-акустических волнах;

цифровой на основе вычислительных процедур.

Необходимо отметить, что умножители частоты с ИФАПЧ относятся к числу чрезвычайно динамичных, развивающихся систем формирования дискретного множества частот. Решающую роль при этом играют такие важнейшие преимущества умножителей частоты и ИФАПЧ, как возможность реализации высококачественных спектральных и приемлемых динамических характеристик при хороших габаритных, энергетических и других показателях.

2. Обзор методов решения аналогичных задач

Рассмотрим некоторые схемы и методы построения умножителей частоты. Процесс умножения частоты на нелинейном элементе сводится к следующему: входной сигнал воздействует на нелинейный элемент или на нелинейный резонатор, в результате чего синусоидальное колебание превращается в периодическое несинусоидальное, которому соответствует бесконечный ряд синусоидальных составляющих. Затем резонатор выделяет ту составляющую, на которую он настроен, в результате чего на выходе выделенная гармоника преобладает над всеми остальными.

Величины побочных гармоник определяется добротностью резонатора, и для того, чтобы их уменьшить, необходимо увеличивать добротность резонаторов. Однако величина добротности резонаторов особенно на длинных и коротких волнах ограничена, и в этом случае для ослабления побочных гармоник применяют специальные фильтры или различные буферные каскады.

Основным показателем умножителя частоты на пассивном нелинейном элементе является коэффициент полезного действия η, под которым понимается отношение мощности N-ой гармоники в нагрузке к мощности, потребляемой от возбудителя:

Столь малые значения к.п.д. обусловлены тем, что из-за выпрямительных свойств нелинейного активного сопротивления большая часть мощности возбудителя преобразуется в мощность постоянного тока и выделяется в цепи смещения.

Если для цепей умножения частоты применять нелинейное реактивное сопротивление, то из-за отсутствия в таком нелинейном элементе потерь мощности при идеальной фильтрации во входной и выходной цепях к.п.д. умножителя будет равен.

В качестве нелинейного реактивного сопротивления в умножителях частоты обычно используют нелинейную ёмкость p -n перехода.

Рисунок 2.1 . Структурная схема умножителя частоты на нелинейном элементе. 1 – фильтр, настроенный на гармонику, близкую к первой; n – фильтр, настроенный на n-ую гармонику.

Принцип работы умножителей на фазовращателях показан на рис.2.2. Частота синусоидального сигнала умножается на N путем разделения входного напряжения на N различных фаз, равноудаленных друг от друга в диапазоне 360°. N сигналов с различными фазами управляют N транзисторами, работающими в режиме класса С, выходные сигналы которых объединяются для формирования импульса через каждые 360°/N градусов. Благодаря использованию N транзисторов мощность входного сигнала может быть в N раз выше мощности, необходимой для насыщения транзистора.

Рисунок 2.2 . Структурная схема умножителя частоты на фазовращателях.

Схема простого умножителя частоты с переменным коэффициентом умножения и жесткой синхронизацией выходных сигналов по отношению к входным приведена на рис. 2.3. Он состоит из генератора импульсов на трех инверторах DD1.1-DD1.3 и синхронизирующего каскада на транзисторе VT1.

Когда входные синхроимпульсы отсутствуют, мультивибратор на DD1.1-DD1.3 работает в обычном режиме. Если в генераторе использована микросхема с двумя защитными диодами на входе, длительность перезарядки конденсатора C1 для любой полярности одинакова и период импульсов составит 1,4 R3 C1, а частота f - 0,7/(R3 C1).

При поступлении на вход VT1 положительных импульсов частоты F вх (рис. 2.3) транзистор в моменты t 1 ,t 3 открывается, что приводит к срыву процесса периодической перезарядки. После закрывания его с момента t 2 , t 4 процесс генерации возобновляется.Генератор формирует импульсы, синхронные по отношению к входным с частотой

F вых = kF вх, (2.3)

Рисунок 2.3 . Принципиальная схема умножителя частоты с жёсткой синхронизацией.

где k - переменный коэффициент умножения,определяемый элементами R3, C1, а F вх - частота входных импульсов.

В качестве элементов DD1 можно использовать любые инверторы микросхем серий К176, К561, КР1561. Кроме того, элементы DD1.1, DD1.2 могут быть без инверсии (буферы) или с гистерезисом (триггеры Шмитта).Транзистор серии КТ315 допустимо заменить другим аналогичным.

Это устройство при подаче на вход импульсов строчной частоты телевизионной развертки позволяет выделять строго определенные участки строки растра для формирования или считывания информации.

Так же умножитель частоты можно спроектировать на резонансном усилительном каскаде. Резонансным называется усилитель, нагрузкой которого служит резонансный контур, настроенный на частоту усиливае­мого сигнала. Для настройки в контуре используется переменное реактивное сопротивление. Резонансные усилители являются из­бирательными высокочастотными усилителями. В радиотехнике они предназначаются для выделения из действующих на входе сигналов с разными частотами лишь группы сигналов с близкими частотами, которые несут нужную информацию. К резонансным усилителям предъявляются требования возможно большего уси­ления, высокой избирательности и стабильности, малого уровня шумов, удобства управления и др.

В резонансных усилителях транзистор можно включить с ОЭ, ОБ и ОК. В большинстве случаев используется схема с оэ, обес­печивающая максимальное усиление по мощности с малым уров­нем шумов. В ряде случаев на достаточно высоких для выбранного транзистора частотах используется схема с ОБ. Колебательный контур в усилитель можно включить по автотрансформаторной, двойной автотрансформаторной, трансформаторной и емкостной схемам.

Рисунок 2.4 . Принципиальная схема умножителя частоты на резонансном усилительном каскаде.

3. Выбор обоснования и предварительный расчёт структурной схемы

Задача обеспечения стабильной работы транзисторного умножителя, как правило, решается более сложно, чем для усилителя, поскольку состав высших гармоник в импульсе тока изменяется более существенно, чем амплитуда первой гармоники. Высокая стабильность возможна в схемах, в которых используется отрицательная обратная связь. Создание источника с большим внутренним сопротивлением в умножителях затруднено, так как для фильтрации побочных гармонических составляющих в них обычно используются параллельные колебательные контуры высокой добротности. Такой контур для высших гармонических составляющих входного тока имеет практически нулевое сопротивление и поэтому может рассматриваться как источник гармонического сигнала с нулевым внутренним сопротивлением, что соответствует заданию моего курсового проекта.

Гармоническая форма напряжения может быть в принципе заметно искажена из-за шунтирующего действия нелинейного входа транзистора. Однако при малых мощностях, при которых обычно работает умножитель, входные сопротивления транзистора достаточно велики, чтобы этот эффект не проявлялся.

Структурная схема умножителя частоты представлена на рисунке 3.1

Рисунок 3.1 – структурная схема умножителя частоты

Слабый входной сигнал усиливается с помощью каскадов предварительного усиления. Их число зависит от уровней как входного сигнала, так и сигнала, который требуется получить на выходе многокаскадного усилителя.

Усиленный предварительными каскадами сигнал подаётся на резонансный каскад, который, работая в режиме сильных сигналов, усиливает и фильтрует третью гармонику гармонического сигнала, подаваемого на вход. Тем самым происходит умножение входной синусойды с коэффициентом умножения N = 3. Выходной каскад предназначен для усиления преобразованного сигнала и передачи его с заданной мощностью на нагрузку. Для лучшей фильтрации побочных составляющих спектра выходного можно подключить резонансный LC-фильтр перед нагрузкой.

Определим максимальный ток протекающий через нагрузку:

(3.1)

Исходя из данных:

(3.2)

Тогда ориентировочное количество каскадов предварительного усиления по следующей формуле:

(3.3)

Для нашего проекта достаточно буде двух каскадов усиления – предварительного и резонансного. Ориентировочный коэффициент усиления для каждого каскада :

Для расчёта резонансного и предварительного усилительного каскада выберем транзистор ГТ309, который удовлетворяет предъявленным требованиям по частоте и выходной мощности. Параметры транзистора:

– предельная частота

Коэффициент усиления по току

Ом – сопротивление базы

- ток насыщения

Импульс тока каоллектора

Мощность рассеяния

4. Описание принципа работы структурной схемы

Т.к. по условию поставленной задачи генератор входного сигнала отсутствует, а на вход усилителя непосредственно подаётся синусойда заданной частоты и амплитуды, то входное устройство может отсутствовать в разрабатываемой структурной схеме.

Схемная реализация каскада предварительного усиления представлена на рисунке 4.1. Это схема усилителя на биполярном транзисторе включенном по схеме с общим эмиттером. Я выбрал эту схему так как у нее сравнительно большие коэффициенты усиления по напряжению и по току, а также большое входное сопротивление. Недостаток этой схемы – сдвиг фаз между входным и выходным сигналом равен 180° но в поставленной задаче не указывается обязательное сохранение фазы на выходе, так что этим недостатком можно пренебречь.

Основными элементами схемы являются источник питания, управляемый элемент - транзистор и резистор . Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекания управляемого по цепи базы коллекторного тока создается усиленное переменное напряжение на выходе схемы. Остальные элементы каскада выполняют вспомогательную роль. Конденсаторы , являются разделительными.

Конденсатор исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи → → и, во-вторых, обеспечить независимость от внутреннего сопротивления этого источника напряжения на базе в режиме покоя. Функция конденсатора сводится к пропусканию в цепь нагрузки переменной составляющей напряжения и задержанию постоянной составляющей.

Рисунок 4.1 – принципиальная схема усилительного каскада с общим эммитером

Резисторы и используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ток покоя управляемого элемента (в данном случае ток) создается заданием соответствующей величины тока базы покоя. Резистор предназначен для создания цепи протекания тока. Совместно с резистор обеспечивает исходное напряжение на базе относительно зажима ”+” источника питания.

Резистор является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменении температуры. Температурная зависимость параметров режима покоя обусловливается зависимостью коллекторного тока покоя от температуры. Основными причинами такой зависимости являются изменения от температуры начального тока коллектора , напряжения и коэффициента β. Температурная нестабильность указанных параметров приводит к прямой зависимости тока от температуры. При отсутствии мер по стабилизации тока, его температурные изменения вызывают изменение режима покоя каскада, что может привести, как будет показано далее, к режиму работы каскада в нелинейной области характеристик транзистора и искажению формы кривой выходного сигнала. Вероятность появления искажений повышается с увеличением амплитуды выходного сигнала.

Проявление отрицательной обратной связи и ее стабилизирующего действия на ток нетрудно показать непосредственно на схеме рис. 2. Предположим, что под влиянием температуры ток увеличился. Это отражается на увеличении тока, повышении напряжения и соответственно снижении напряжения. Ток базы уменьшается, вызывая уменьшение тока, чем создается препятствие наметившемуся увеличению тока. Иными словами, стабилизирующее действие отрицательной обратной связи, создаваемой резистором , проявляется в том, что температурные изменения параметров режима покоя передаются цепью обратной связи в противофазе на вход каскада, препятствуя тем самым изменению тока, а, следовательно, и напряжения.

Конденсатор шунтирует резистор по переменному току, исключая тем самым проявление отрицательной обратной связи в каскаде по переменным составляющим. Отсутствие конденсатора привело бы к уменьшению коэффициентов усиления схемы.

Название схемы «с общим эмиттером» означает, что вывод эмиттера транзистора по переменному току является общим для входной и выходной цепи каскада.

Резонансным называется усилитель, нагрузкой которого служит резонансный контур, настроенный на частоту усиливаемого сигнала. Для настройки в контуре используется переменное реактивное сопротивление. Резонансные усилители являются избирательными высокочастотными усилителями. В радиотехнике они предназначаются для выделения из действующих на входе сигналов с разными частотами лишь группы сигналов с близкими частотами, которые несут нужную информацию. К резонансным усилителям предъявляются требования возможно большего усиления, высокой избирательности и стабильности, малого уровня шумов, удобства управления и др.

В резонансных усилителях транзистор можно включить с ОЭ, ОБ и ОК. В нашем случае используется схема с ОЭ, обеспечивающая максимальное усиление по мощности с малым уровнем шумов. Колебательный контур в усилитель можно включить по автотрансформаторной, двойной автотрансформаторной, трансформаторной и емкостной схемам. Неполное включение контура в коллекторную цепь и к нагрузке позволяет избежать чрезмерного ухудшения добротности контура (особенно когда нагрузкой служит малое входное сопротивление транзистора).

Рисунок 4.2 – принципиальная схема резонансного усилительного каскада

5. Описание схемы электрической и электрический расчёт

Прежде всего рассчитаем резонансный каскад.

Исходные данные:

Коэффициент умножения

Чтобы обеспечить запас стабильности на погрешность расчёта, зададимся нестабильностью тока 3-й гармоники 𝛿I = 10% . Из графика рис. 5.1 при выбранном управляющем напряжении такая стабильность обеспечивается при

0,4 ≤ cosλ ≤ 0,6 (5.2)

Где λ – угол закрывания

Рисунок 5.1 – График зависимости отношения гармоник, нестабильности тока и коэффициента Берга от угла закрывания для утроителя частоты

Учтём предельно допустимые параметры транзистора:

Где - напряжённость коллектора

Величина напряжения источника питания

Из графика рис. 5.1:

> 0,4 (5.10)

Тогда окончательно зададим угол закрывания:

Рассчитаем сопротивление обратной связи:

Из рис. 5.3 для низкочастотного приближения (выберем ωτ=1, т.к. в рабочих режимах постоянная составляющая мало зависит от частоты и и при выбранном значении ωτ=1 ошибка не превышает 10%) при 0,55. Выберем .

Рисунок 5.3 – зависимость коэффициента от

МГц минимальное значение рабочей частоты.

Исходя из этого, рассчитаем разделительные ёмкости:

Рабочая частота:

Определим входное сопротивление каскада:

– относительная расстройка (6.3)

Заключение

В нашей курсовой работе мы рассчитали умножитель частоты с коэффициентом умножения, равным 3 и с входным сигналом

Полученная схема состоит из двух усилительных каскадов с коэффициентами умножения 25 и 42,6 и полосового фильтра на выходе с добротностью 20.

Проанализировав амплитудно-частотную и фазо-частотную характеристики, я могу сделать вывод, что полученный прибор соответствует заданным условиям проектирования и может быть использован в инженерно-технических целях.


8. Литература

1.Валитов Р.А. - радиопередающие устройства на полупроводниковых приборах.

2. Лейк-Сан-Маркос - Умножитель частоты на фазовращателях.

3. И. Забелин - Журнал "Радио",8 номер, 1999г.

4. Л.Н. Бочаров - Расчет электронных устройств.

5. И.И. Четвертков - справочник резисторов.

6. М.Н. Дьяконов – справочник по электрическим конденсаторам.

7. В.Г. Басов - курсовое проектирование.

8. В.Г. Басов – конспект лекций.

Удвоитель на составном каскаде. Устройство (рис. 14.18) собрано на двух транзисторах разной проводимости. В исходном состоянии оба транзистора закрыты. На входе действует сигнал гармонической формы. Положительная полярность входного сигна­ла открывает транзисторVT1 и закрывает транзисторVT2. Проте­кающий ток транзистораVT1 создает падение напряжения на ре­зисторахR3 иR4. На первом выходе будет сигнал, совпадающий по фазе с входным сигналом, а на втором выходе сигнал будет находиться в противофазе. При равенстве сопротивлений резисто­ровR3 иR4 амплитуды этих сигналов будут равны. Отрицательная полуволна входного сигнала закроет транзисторVT1 и откроет транзисторVT2. НаВыходе 1 появится сигнал, находящийся в про­тивофазе с входным сигналом, а наВыходе 2 - будет совпадать по фазе с входным сигналом. Таким образом, при подаче на вход си­нусоидального сигнала наВыходе 1 все полуволны будут положи­тельными, а наВыходе 2 - отрицательными. Удвоитель работает в диапазоне частот от 200 Гц до 20 кГц.

Рис. 14.18 Рис. 14.19

Транзисторный удвоитель. Удвоитель (рис. 14.19) состоит из двух транзисторов. Первый транзистор работает в схеме с коллекторно-эмиттерной нагрузкой, и коэффициент передачи его равен единице. Второй транзистор работает в схеме с ОБ. Входной сигнал создает в эмиттереVT2 ток, который на коллекторной нагрузкеR3 создает напряжение, равное по амплитуде входному напряжению. Таким образом, положительная полуволна гармонического сигнала проходит через транзисторVT1 и выделяется на резистореR3 со сдвигом по фазе 180°, а отрицательная полуволна проходит через транзисторVT2 без изменения фазы. В результате напряжение на резистореR3 будет иметь вид, получаемый после двухполупериод-ного выпрямления входного сигнала. Удвоитель работает в широ­ком диапазоне частот, который определяется типом примененных транзисторов.

Умножитель на транзисторах. Схема удвоения частоты входно­го гармонического сигнала (рис. 14.20) состоит из двух каскадов. Каждый каскад увеличивает частоту сигнала в 2 раза. Положи­тельная полуволна входного сигнала с амплитудой 0,5 В открывает транзисторVT2. Отрицательная полуволна проходит через транзи­сторVT1. Эти два сигнала суммируются на резистореR2. Транзи­сторVT2 инвертирует входной сигнал,a VT1 - не инвертирует. На резистореR2 формируется сигнал двухполупериодного выпрямле­ния. Этот сигнал через эмиттерный повторитель подается на второй каскад. Амплитуда выходного сигнала повторителя равна 0,6 В.

Рис. 14.20 Рис. 14.21

Диодный умножитель. Входное гармоническое напряжение (рис. 14.21) подается на трансформатор. Во вторичной обмотке трансформатора включены две фазосдвигающие цепочки. В них про­исходит сдвиг фазы гармонического сигнала на 120°. В результате этого через диоды проходят сигналы, сдвинутые по фазе. На вход­ном сопротивлении транзистора они суммируются. Третья гармони­ка суммарного пульсирующего сигнала выделяется контуром. Но­миналы элементов фазосдвигающих цепочек рассчитаны на частоту 400 Гц.

Рис. 14.22

Детекторный удвоитель частоты. В основу такого удвоителя (рис. 14.23) положено двухполупериодное выпрямление на двух транзисторахVT1 иVT2. Отрицательная полуволна выходного на­пряжения ОУ проходит через транзисторVT1, а положительная - через транзисторVT2. РезисторыR6 иR8 выбраны одинаковыми, поэтому коэффициенты передачи обеих полуволн равны. Для устра­нения искажений формы выходного сигнала, вызванных влиянием порогового начального участка характеристик транзисторов, ис­пользуется ОУ с нелинейной ООС. С помощью потенциометраR2 на выходе ОУ устанавливается напряжение, соответствующее минимальным искажениям выходного сигнала. Удвоитель хорошо ра­ботает при треугольной форме входного сигнала. Для этой формы входного сигнала можно последовательно включать до десяти схем умножения.

Рис. 14.23 Рис. 14.24

Рис. 14.25

Дифференциальный удвоитель. Удвоитель частоты (рис. 14.24) состоит из эмиттерного повторителя, собранного на транзистореVT1, и усилительного каскада, построенного на транзистореVT2. Входной сигнал через конденсатор С1 поступает в базу транзисто­раVT1. В эмиттере этот сигнал складывается с сигналом, который проходит через транзисторVT2. ТранзисторVT2 работает в нели­нейном режиме. Он пропускает отрицательные полуволны входного сигнала. Перевернутый по фазе входной сигнал будет вычитаться из сигнала эмиттерного повторителя. Уровень взаимодействующих сигналов можно регулировать резисторамиR4 иR5. РезисторR4 управляет амплитудой отрицательной полуволны, а резисторR5 регулирует отношение эмиттерного сигнала к коллекторному.

Удвоитель частоты прямоугольного сигнала. Устройство (рис. 14.25,а) осуществляет преобразование входного сигнала гар­монической формы в прямоугольный сигнал с удвоенной частотой. Входной сигнал поступает в эмиттеры транзисторовVT1 иVT2. ТранзисторVT1 работает в режиме ограничения. Второй транзи­стор также ограничивает сигнал, но за счет конденсатора С1 про­исходит сдвиг выходного сигнала на 90° относительно входного. Два ограниченных сигнала суммируются через резисторыR6 иR7. Суммарный двухполярный сигнал с помощью транзисторовVT3 иVT4 преобразуется в сигнал с удвоенной частотой. Эпюры сигналов в различных точках показаны на рис. 14.25,б. Удвоитель работает в широком диапазоне частот от 20 Гц до 100 кГц. Такой диапазон можно перекрыть, если применить со­ответствующую емкость конденсато­ра С1. Входной сигнал должен иметь амплитуду не менее 2 В.

Компенсационный умножитель. Умножитель частоты компенсацион­ного типа (рис. 14.26) построен на одном транзисторе. Ограниченный по амплитуде сигнал суммируется с входным сигналом гармонического вида на резистореR1 В Deэvль тате на выходе формируется сигнал, частота которого в 3 раза вы ше частоты входного сигнала. Форма выходного сигнала не являет­ся идеально гармонической. Этот сигнал необходимо пропустить через фильтр, чтобы уменьшить уровень высоких гармоник На Фор­му сигнала в большой степени влияет уровень ограничения транзи­стора. При малых углах отсечки выходного сигнала значительно уменьшаются высокочастотные спектральные составляющие. Умень­шается при этом и амплитуда третьей гармоники.


Рис. 14.26 Рис. 14.27

Делитель на ОУ. Делитель (рис. 14.27,а) построен на четектн-ропании суммарного сигнала на выходе ОУ. НаВход 1 полается сигнал гетеродина с амплитудой 0,1 В, наВход 2 - преобразуемый сигнал. Зависимость амплитуды выходного сигнала от преобразуе­мого сигнала показана на рис. 14.27,б.

Довольно часто при построении схем разнообразных генераторов и синтезаторов частот возникает необходимость в преобразовании сигналов одной частоты в сигналы большей частоты. Это можно сделать при помощи описанных в разделе Смесители схем смесителей (обеспечив преобразование вверх). Однако, когда требуется кратное преобразование (в два, три и более раз), удобнее и эффективнее использовать схемы так называемых умножителей частоты . Как следует из названия, такие схемы обеспечивают кратное преобразование (умножение) частоты входного сигнала.

Диодные умножители частоты характеризуются рядом положительных черт, которые обусловливают довольно широкое применение таких устройств (особенно на высоких и сверхвысоких частотах). К наиболее важным относятся: низкий уровень тепловых и фазовых шумов, способность работать на очень высоких частотах (вплоть до частот субмиллиметрового диапазона), а также относительная простота конструкции.

В настоящее время на практике применяется три принципиально отличающихся методики умножения частоты в диодных умножителях:

  • варакторное умножение (умножение на нелинейной емкости);
  • удвоение на схеме двухполупериодного выпрямления;
  • диодное преобразование формы импульсов с последующим выделением нужной гармоники.

Работа умножителей частоты характеризуется рядом параметров: коэффициент умножения , входная (\(P_{вх}\)) и выходная (\(P_{вых N}\)) мощности , КПД (\(\eta = P_{вых N}/P_{вх}\) , иногда его называют эффективностью умножителя или коэффициентом передачи по мощности ), полоса рабочих частот и т.д.

Варакторные умножители частоты - это устройства, главным рабочим элементом которых является умножительный варикап (варактор) - полупроводниковый диод, который используется как нелинейная емкость с малыми потерями. Преобразование частоты происходит за счет искажения формы сигнала на нелинейно зависящей от напряжения емкости варактора и последующего выделения нужной гармонической составляющей. Структурные схемы двух основных типов варакторных умножителей представлены на рис. 3.6-35.

Рис. 3.6-35. Последовательная (а) и параллельная (б) структурные схемы варакторных умножителей частоты

Эти структурные схемы содержат: источник входного сигнала, варактор, нагрузку и фильтры \(Ф1\), \(Ф2\). Фильтры служат для фильтрации гармоник в нагрузке и источнике входного сигнала, а также для согласования нагрузки и источника с варакторным умножителем. Первый фильтр \(Ф1\) настраивается на частоту входного сигнала (это может быть, например, фильтр нижних частот с частотой среза незначительно превышающей частоту входного сигнала), а второй фильтр \(Ф2\) - на частоту нужной гармоники (это должен быть достаточно узкополосный полосовой фильтр, точные требования к полосе пропускания обоих фильтров определяются спектром умножаемого сигнала). При таких характеристиках через варактор протекают лишь две гармоники тока (конечно, любые реальные фильтры неидеальны, поэтому на самом деле будут присутствовать и все другие гармоники, но они будут существенно подавлены).

Мощность сигнала, подведенная к умножителю, частично теряется в варакторе и фильтрах. Некоторая доля преобразованной мощности рассеивается в элементах схемы. Поэтому коэффициент передачи по мощности варакторных умножителей частоты меньше единицы. Обычно стремятся получить максимальные выходную мощность и КПД, т.е. добиться режима, оптимального по энергетическим показателям.

Варакторные умножители находят наибольшее применение в диапазоне СВЧ (сантиметровые, миллиметровые и субмиллиметровые длины волн). Их основное достоинство состоит в том, что с их помощью могут быть созданы достаточно мощные генераторы на те диапазоны частот, в которых нельзя добиться приемлемых параметров от генераторов на диодах Ганна или лавинно-пролетных диодах (например, ввиду невозможности непосредственной генерации диода Ганна или лавинно-пролетного диода на нужной частоте или ввиду повышенного уровня шумов генераторов на ЛПД).

В реальных умножителях сантиметрового диапазона (по выходной частоте) при коэффициенте умножения равном двум достигается КПД порядка 60...70 %. При увеличении коэффициента умножения КПД падает, так в утроителях он уже не превышает 40...50 %, а в умножителе частоты на восемь падает до 10...12 %. Указанные значения могут быть несколько увеличены при применении ряда специальных методик, таких как: работа в режиме с частичным отпиранием варактора и введение дополнительных (т.н. “холостых ”) контуров в схему умножителя (рис. 3.6-35).

В обычном умножителе варактор все время находится в режиме обратного смещения (цепи задания режима по постоянному току на рис. 3.6-35 не показаны), причем, с точки зрения уменьшения потерь в варакторе, выгодно максимально увеличивать напряжение смещения вплоть до уровня, граничащего с напряжением пробоя. Снижение потерь, казалось бы, означает большую выходную мощность и КПД умножителя. Тем не менее, это не всегда так - очень важен характер вольт-фарадной характеристики \(C(U)\) применяемого варактора. Дело в том, что нелинейность именно этой характеристики является основополагающим физическим эффектом, лежащим в основе работы варакторного умножителя. Так, например, если зависимость емкости диода от приложенного обратного напряжения близка к квадратичной, то наиболее эффективным будет применение такого диода в удвоителях частоты, а если степень нелинейности выше, то он неплохо справится и с умножением на больший коэффициент. Но самым важным является не характер, а глубина данной нелинейности, т.е. абсолютные величины коэффициентов \(b, c, d, ... \) в формуле, отражающей разложение зависимости \(C(U)\) в ряд Тейлора: \(C(U) = C_0 + aU + bU^2 + cU^3 + ... \). Усилить нелинейность удается в режиме с частичным открыванием \(p\)-\(n\)-перехода варактора .

Если варактор в течение всего периода входного сигнала закрыт, то для умножения частоты используется только барьерная емкость перехода. При открывании диода к барьерной добавляется диффузионная емкость, которая меняется от напряжения значительно сильнее, и вольт-фарадная характеристика становится более нелинейной. Однако при открывании существенно возрастают потери за счет прямого тока диода. Таким образом, существует некий критерий, определяющий возможность использования режима с частичным открыванием в том либо ином варакторном умножителе частоты. Данный критерий определяется исходя из частотных свойств варактора и частот входного и выходного сигналов. Дело в том, что в функционирующем в режиме с частичным открыванием варакторе с увеличением частот сигналов будет изменяться характер потерь. При малых частотах преобладающими будут рекомбинационные потери, с увеличением частоты они падают, но существенными становятся потери инерционные. В некотором диапазоне частот оба вида потерь могут оказаться достаточно малы, и как следствие - общая добротность варактора превысит единицу, что и обусловливает целесообразность применения режима с частичным открыванием. Граничные частоты оцениваются следующими соотношениями: \(f_{вх} > 1/\tau_{эфф}\), \(f_{вых N} < 1/\tau_{выкл}\), где \(f_{вх}\), \(f_{вых N}\) - частоты входного и выходного сигналов, \(\tau_{эфф}\) - эффективное время жизни неосновных носителей в базе диода, \(\tau_{выкл}\) - время выключения диода.

В высокочастотных варакторах применяются специальные меры по снижению \(\tau_{выкл}\), которое может составлять десятые доли наносекунд. Для этого уменьшают толщину базы и выполняют ее с неравномерной концентрацией примесей (см. Диоды с накоплением заряда).

Методика дополнения варакторного умножителя так называемыми холостыми контурами позволяет увеличить КПД для умножителей с коэффициентом умножения больше двух. Она основана на дополнительном преобразовании на том же варакторе сигнала 2-й, 3-й... гармоники в полезный выходной сигнал. Пояснить сказанное можно на примере утроителя с дополнительным контуром, настроенным на 2-ю гармонику. Если схема включения данного контура такова, что он не является нагрузкой для 2-й гармоники (работает на холостом ходу), т.е. потери на этой гармонике будут малы (отсюда и название - утроитель с холостым контуром, настроенным на 2-ю гармонику), то взаимодействие колебаний 1-й и 2-й гармоник на нелинейной емкости будет приводить к преобразованию части мощности 2-й гармоники в мощность 3-й.

При увеличении выходной мощности за счет холостого контура растет и мощность потерь - ведь теперь в диоде рассеивается мощность трех составляющих тока, а не двух, как в простом умножителе. Несмотря на это, КПД может увеличиться, если выходная мощность возрастает в большей мере, чем потери. На практике для утроителя с холостым контуром на 2‑ю гармонику достижим КПД порядка 70% вместо обычных 40...50 %. В умножителях большей кратности возможно применение нескольких холостых контуров, однако их реализация на сверхвысоких частотах существенно усложняет конструкцию и настройку умножителя при незначительном росте его эффективности. Поэтому обычно ограничиваются одним, реже - двумя холостыми контурами.

Описанное выше варакторное умножение частоты относится к классическому, используемому сравнительно давно и часто способу выделения гармоник на нелинейном элементе. Основные достоинства и недостатки данного метода следующие:

  • возможность генерации существенных мощностей на частотах, которые являются рекордно высокими для любых полупроводниковых генераторов СВЧ;
  • высокий КПД, особенно в режиме с частичным открыванием и при введении холостых контуров;
  • поскольку варакторные умножители являются резонансной системой им свойственна узкополосность и трудность перестройки по частоте;
  • при работе на низких частотах резонансная система становится слишком громоздкой, а требуемая для выделения нужной гармоники добротность реализуется с трудом.

В последнее время все большее распространение получают умножители частоты, в которых резонансный способ выделения гармоник не используется. Одной из разновидностей являются умножители, основанные на эффекте удвоения частоты на схеме двухполупериодного выпрямления .

Для двухполупериодного выпрямителя характерно, что частота пульсаций выходного напряжения в два раза превышает частоту входного напряжения (анализ работы таких выпрямителей приведен в разделе Выпрямители). Именно это свойство используется при работе удвоителей частоты. На рис. 3.6-36, 3.6-37 приведены схемы двух простых удвоителей, основанных на двухполупериодной схеме выпрямления со средней точкой и на мостовой схеме.

Рис. 3.6-36. Удвоитель частоты на основе двухполупериодного выпрямителя со средней точкой

Рис. 3.6-37. Удвоитель частоты на основе мостового выпрямителя

В приведенных схемах удвоителей могут применяться диоды самых различных типов (кремниевые, германиевые или арсенид-галлиевые диоды с \(p\)-\(n\)-переходом, диоды с накоплением заряда , диоды с переходом Шоттки , СВЧ диоды), параметры этих диодов будут полностью определять частотные и мощностные свойства удвоителя. Например, использование диодов с барьером Шоттки, которые имеют малое прямое падение напряжения, позволяет подавать на вход достаточно слабые сигналы, а если использовать диоды СВЧ, то и рабочий диапазон устройства смещается в область сверхвысоких частот (рабочий диапазон частот определяется также частотными свойствами трансформаторов).

В качестве трансформаторов на входе и выходе умножителя могут использоваться обыкновенные резонансные контуры, однако наилучшие параметры достижимы при применении широкополосных симметрирующих трансформаторов аналогичных тем, которые используются в широкополосных диодных смесителях . Такие трансформаторы обеспечивают лучшее согласование по входу и выходу, а также обладают высокой широкополосностью, что позволяет применять удвоитель частоты для сигналов очень широкого диапазона частот без какой-либо перестройки. Существует много вариантов включения широкополосных трансформаторов, правильный выбор позволяет обеспечить требуемый для конкретного устройства входной импеданс. На рис. 3.6-38, 3.6-39 приведен ряд примеров удвоителей частоты с широкополосными трансформаторами.

Рис. 3.6-38. Удвоитель частоты на основе мостового выпрямителя с широкополосными симметрирующими трансформаторами (коэффициент трансформации 1:4 или 1:1)

Рис. 3.6-39. Удвоитель частоты на основе двухполупериодного выпрямителя с широкополосным симметрирующим трансформатором (коэффициент трансформации 1:4) на входе

Заметим, что в схеме на рис. 3.6-39 выходной трансформатор отсутствует, его заменил дроссель \(L1\). Это практически не оказывает влияния на параметры умножителя, зато упрощает его конструкцию.

При необходимости обеспечить умножение частоты в 4, 8 и т.д. раз удвоители на схемах выпрямления могут включаться последовательно. При этом, однако, следует иметь в виду, что их КПД не очень высок (порядка 20 % для двухдиодного удвоителя). Поэтому между каскадами удвоения, как правило, включаются промежуточные усилительные каскады.

Таким образом, основными свойствами удвоителей на схемах двухполупериодного выпрямления являются:

  • простота построения и высокая широкополосность, особенно при применении широкополосных согласующих трансформаторов;
  • отсутствие громоздких резонансных систем, что позволяет выполнять удвоители компактными и использовать на низких частотах;
  • низкий КПД и, как следствие, необходимость в промежуточном усилении при многокаскадном включении.

Кроме двух описанных выше методик для умножения частоты могут применяться самые разнообразные схемы, которые работают по принципу изменения формы входного синусоидального сигнала на цепи с существенными нелинейными свойствами и последующим выделением нужной гармоники . Такой принцип очень близок к варакторному умножению частоты, в основе которого также лежит нелинейная цепь (варактор), однако он обеспечивает гораздо меньший КПД, поскольку типовые ключевые цепи, обеспечивающие изменение формы сигнала, обычно характеризуются достаточно высокими потерями, а реализуемый ими характер нелинейности вызывает появление слишком большого числа разнообразных гармоник. Основным же достоинством данных умножителей является простота принципиальной схемы и настройки. Также как и варакторные умножители, умножители с изменением формы сигнала являются резонансными устройствами и при изменении частоты должны подвергаться перестройке.

Пример схемы простого утроителя построенного по описанному принципу приведен на рис. 3.6-40.

Рис. 3.6-40. Утроитель частоты 10/30 МГц на диодах

Также как и в описанных выше умножителях на выпрямляющих схемах, большинство параметров данного умножителя определяются типом применяемых в нем диодов. Оптимальным обычно является выбор диодов с барьером Шоттки соответствующей мощности.

Принцип работы схемы состоит в следующем. Входной фильтр \(L1\), \(C1\) обеспечивает согласование импеданса следующего за ним диодного преобразователя с выходом предыдущего каскада, кроме этого, он предотвращает проникновение высокочастотных гармоник сигнала на вход умножителя. Диодный преобразователь \(VD1-VD4\), \(L2\) служит для преобразования входного синусоидального сигнала в прямоугольный. Выходные цепи \(C2\), \(L3\), \(C3\), \(L4\) выделяют из прямоугольного сигнала нужную гармонику и обеспечивают согласование импедансов на выходе умножителя. Очень важным достоинством данной схемы является уникально низкий фазовый шум, что может быть решающим фактором для некоторых случаев применения умножителей частоты.

Если провести математический анализ простого прямоугольного сигнала, окажется, что в нем присутствуют только гармоники с нечетными номерами (1-я, 3-я, 5-я, 7-я и т.д.). Таким образом, приведенная на рис. 3.6-40 схема при соответствующей настройке резонансных контуров может использоваться для умножения частоты на 3, 5, 7, ... . Для обеспечения четного умножения необходимо другое преобразование формы сигнала, например, в сигнал треугольной формы. Следует иметь в виду, что с повышением коэффициента умножения существенно снижается и без того достаточно невысокий КПД умножителя частоты.

Схема еще одного простого умножителя частоты приведен на рис. 3.6-41. Его работа также основана на преобразовании формы синусоидального сигнала в прямоугольный сигнал с последующим выделением нечетной гармоники.

Понравилась статья? Поделиться с друзьями: