Какие бывают виды сигналов. Определение и виды сигналов

Аналоговый сигнал является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения независимой переменной. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в своем развитии (динамике изменения значений определенных свойств) во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (аналогичен) порождающему его процессу. Пример математической записи конкретного аналогового сигнала: y (t ) = 4.8exp[-(t -4) 2 /2.8]. Пример графического отображения данного сигнала приведен на Рис. 2.2.1, при этом как числовые величины самой функция, так и ее аргументов, могут принимать любые значения в пределах некоторых интервалов y 1 £ y £ y 2 , t 1 £ t £ t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует непрерывное пространство, в котором любая точка может быть определена с бесконечной точностью.

Рис. 2.2.1. Графическое отображение сигнала y (t ) = 4.8 exp[-(t -4) 2 /2.8].

Дискретный сигнал по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью y (n ×Dt ), где y 1 £ y £ y 2 , Dt - интервал между отсчетами (интервал дискретизации сигнала), n = 0, 1, 2, ..., N – нумерация дискретных значений отсчетов. Если дискретный сигнал получен дискретизацией аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам n Dt .

Пример дискретизации аналогового сигнала, приведенного на Рис. 2.2.1, представлен на Рис. 2.2.2. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y (n ).

При неравномерной дискретизации сигнала обозначения дискретных последовательностей (в текстовых описаниях) обычно заключаются в фигурные скобки - {s (t i )}, а значения отсчетов приводятся в виде таблиц с указанием значений координат t i . Для коротких неравномерных числовых последовательностей применяется и следующее числовое описание: s (t i ) = {a 1 , a 2 , ..., a N }, t = t 1 , t 2 , ..., t N .

Цифровой сигнал квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k [y (n Dt )], где Q k - функция квантования с числом уровней квантования k , при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде числового массива по последовательным значениям аргумента при Dt = const, но, в общем случае, сигнал может задаваться и в виде таблицы для произвольных значений аргумента.



По существу, цифровой сигнал является формализованной разновидностью дискретного сигнала при округлении значений последнего до определенного количества цифр, как это показано на Рис. 2.2.3. В цифровых системах и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов и следовательно всегда является цифровым, С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов.

Рис. 2.2.2. Дискретный сигнал Рис. 2.2.3. Цифровой сигнал

y (n Dt ) = 4.8 exp[-(n Dt -4) 2 /2.8], Dt = 1. y n = Q k , Dt =1, k = 5.

В принципе, квантованным по своим значениям может быть и аналоговый сигнал, зарегистрированный соответствующей цифровой аппаратурой (Рис. 2.2.4). Но выделять эти сигналы в отдельный тип не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

Большинство дискретных и цифровых сигналов, с которыми приходится иметь дело, являются дискретизированными аналоговыми сигналами. Но существуют сигналы, которые изначально относятся к классу дискретных, например гамма-кванты.

Рис. 2.2.4. Квантованный сигнал y (t ) = Q k , k = 5.

Спектральное представление сигналов. Кроме привычного временного (координатного) представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты, т.е. по аргументам, обратным аргументам временного (координатного) представления. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала. Математически спектр сигналов описывается функциями значений амплитуд и начальных фаз гармонических колебаний по непрерывному или дискретному аргументу - частоте . Спектр амплитуд обычно называется амплитудно-частотной характеристикой (АЧХ) сигнала, спектр фазовых углов – фазо-частотной характеристикой (ФЧХ). Описание частотного спектра отображает сигнал так же однозначно, как и координатное описание.

На Рис. 2.2.5 приведен отрезок сигнальной функции, которая получена суммированием постоянной составляющей (частота постоянной составляющей равна 0) и трех гармонических колебаний. Математическое описание сигнала определяется формулой:

где A n = {5, 3, 6, 8} - амплитуда; f n = {0, 40, 80, 120} - частота (Гц); φ n = {0, -0.4, -0.6, -0.8} - начальный фазовый угол (в радианах) колебаний; n = 0,1,2,3.

Рис. 2.2.5. Временное представление сигнала.

Частотное представление данного сигнала (спектр сигнала в виде АЧХ и ФЧХ) приведено на Рис. 2.2.6. Обратим внимание, что частотное представление периодического сигнала s (t ), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с непрерывным временным представлением, определенным в интервале от -¥ до +¥.

Рис. 2.2.6. Частотное представление сигнала.

Графическое отображение аналоговых сигналов (Рис. 2.2.1) особых пояснений не требует. При графическом отображении дискретных и цифровых сигналов используется либо способ непосредственных дискретных отрезков соответствующей масштабной длины над осью аргумента (Рис. 2.2.6), либо способ огибающей (плавной или ломанной) по значениям отсчетов (пунктирная кривая на Рис. 2.2.2). В силу непрерывности полей и, как правило, вторичности цифровых данных, получаемых дискретизацией и квантованием аналоговых сигналов, второй способ графического отображения будем считать основным.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Аналоговые и дискретные сигналы

1. Сигнал, непрерывно изменяющийся во времени так, что в любой момент времени можно измерить его значение, называется аналоговым.

2. Сигнал, дискретно изменяющийся во времени так, что его значения определены только в счетные (с определенным шагом) моменты времени, принято называть дискретным.

3. В цепях дискретного времени (с дискретными сигналами) вход и выход всегда имеет общий провод, соединенный с землей. Поэтому его не показывают.

4. Преобразования: аналоговый сигнал дискретный сигнал осуществляют с помощью ключа дискретизатора и ФНЧ.

5. Дискретные сигналы характеризуют скоростью передачи дискретных значений.

Сигнал в виде выборок называют амплитудно импульсным модулированным.

Скорость передачи дискретных значений совпадает с частотой дискретизации.

2. Дискретные и цифровые сигналы

1. Цифровые (двоичные) сигналы являются частным случае дискретных, когда для амплитуды любого импульса допустимы лишь два значения: «0» или «1», соответственно токовой и бестоковой посылки.

2. Переходы дискретный сигнал цифровой сигнал осуществляются с помощью цифро-аналогового преобразователя (ЦАП) и аналогово-цифрового преобразователя (АЦП).

3. АЦП осуществляет преобразование в два приема:

каждое дискретное значение сигнала переводится из десятичной в двоичную систему исчисления;

двоичному числу ставится в соответствие двоичный сигнал, имеющий два положения «0» и «1».

5 = 12 2 + 02 1 + 12 0 101

4. Цифровые сигналы характеризуются скоростью передачи в бит/с.

Бит - минимальное сообщение, означающее выбор одного из двух значений: «0» и «1».

1 байт равен 8 бит.

5. На передачу через ЛЭЦ 1 бит/с обычно требуется 1 Гц полосы частот.

3. Понятие временного разделения каналов

1. Цепь, имеющая несколько входов и выходов и характеризуемая функциональным назначением (усилитель, фильтр и т.д.), называется системой.

2. Система временного разделения каналов основана на придании каждому абоненту своего индивидуального времени работы.

3. A. Индивидуальное время работы означает наличие индивидуальных ключей-дискретизаторов.

Б. Через линию передаются цифровые сигналы.

УУ - управляющее ключами устройство.

В. Для коммутации к АТС подводят входящие и исходящие линии абонентов.

При пространственной коммутации номера входящей и исходящей линий одинаковы, при временной - разные.

ЗУ - задерживающее (на несколько интервалов) устройство.

4. Цифровой фильтр и его элементы

1. В дискретных сигналах информацию несет огибающая импульсов x(n), зависящая от номера отсчета n.

2. Операции над огибающей импульсов осуществляются с помощью устройства, называемого цифровым фильтром.

3. Цифровой фильтр реализуется средствами вычислительной техники и состоит из трех элементов:

сигнал фильтр аналоговый дискретный

4. Синтез цифрового фильтра складывается из трех этапов:

А. Отыскивается аналоговое устройство, осуществляющее нужную операцию над огибающей сигнала.

Б. Импульсная характеристика аналогового устройства дискретизи - руется в виде последовательности импульсов с огибающей g(n).

В. Цифровой фильтр реализуется в виде модели.

Размещено на Allbest.ru

...

Подобные документы

    Основные понятия и определения систем передачи дискретных сообщений. Сигнальные созвездия при АФМ и квадратурная АМ. Спектральные характеристики сигналов с АФМ. Модулятор и демодулятор сигналов, помехоустойчивость когерентного приема сигналов с АФМ.

    дипломная работа , добавлен 09.07.2013

    Фильтрация сигналов на фоне помех в современной радиотехнике. Понятие электрического фильтра как цепи, обладающей избирательностью реакции на внешнее воздействие. Классификация фильтров по типу частотных характеристик. Этапы проектирования фильтра.

    курсовая работа , добавлен 23.01.2010

    Принципы проектирования электрического фильтра и усилителя напряжения. Анализ спектра сложного периодического сигнала. Оценка прохождения входного сигнала через радиотехнические устройства. Разработка схем электрического фильтра и усилителя напряжения.

    курсовая работа , добавлен 28.03.2015

    Понятие и функциональные особенности активного фильтра, его внутренняя структура и элементы, предъявляемые требования, частотные характеристики. Определение параметров и порядка фильтра-прототипа, его передаточной функции. Настройка частоты полюса.

    курсовая работа , добавлен 29.12.2013

    презентация , добавлен 19.08.2013

    Определение операторной функции ARC-фильтра. Расчет амплитудного и фазного спектров реакции. Построение графика функции времени реакции цепи. Определение переходной и импульсной функции фильтра. Реакция цепи на непериодический прямоугольный импульс.

    курсовая работа , добавлен 30.08.2012

    Характер и основные причины повреждений в кабельных линиях, порядок и методы их определения: дистанционные, кратковременной дуги, волновые, измерения частичных разрядов. Виды зондирующих сигналов. Помехи импульсной рефлектометрии и борьба с ними.

    контрольная работа , добавлен 20.03.2011

    Назначение фильтрующих цепей в диапазоне СВЧ. Полосовой фильтр из полуволновых разомкнутых резонаторов. Возможные варианты схем фильтра-прототипа. Структура коаксиальной линии. График вероятности безотказной работы полосового фильтра, расчет допусков.

    курсовая работа , добавлен 24.02.2014

    Формула для сигнала при гармонической модуляции. Амплитуда и частота несущего колебания. Компьютерное моделирование ЧМ-сигналов с помощью программного пакета Electronics Workbench. Спектр частотно-модулированного сигнала. Частота модулирующего колебания.

    лабораторная работа , добавлен 04.06.2015

    Общие свойства линейных цепей с постоянными параметрами. Рассмотрение преобразования сигналов линейными цепями в частотной и временной области. Простейшие цепи и их характеристики: фильтры интегрирующего, дифференцирующего и частотно-избирательного типа.

Назначение радиоэлектронных устройств, как известно, - получение, преобразование, передача и хранение информации, представленной в форме электрических сигналов. Сигналы, действующие в электронных устройствах, и соответственно сами устройства делят на две большие группы: аналоговые и цифровые.

Аналоговый сигнал - сигнал, непрерывный по уровню и во времени, т. е. такой сигнал существует в любой момент времени и может принимать любой уровень из заданного диапазона.

Квантованный сигнал - сигнал, который может принимать только определенные квантованные значения, соответствующие уровням квантования. Расстояние между двумя соседними уровнями - шаг квантования.

Дискретизированный сигнал - сигнал, значения которого заданы только в моменты времени, называемые моментами дискретизации. Расстояние между соседними моментами дискретизации - шаг дискретизации . При постоянном применима теорема Котельникова: , где - верхняя граничная частота спектра сигнала.

Цифровой сигнал - сигнал, квантованный по уровню и дискретизированный во времени. Квантованные значения цифрового сигнала обычно кодируются некоторым кодом, при этом каждый выделенный в процессе дискретизации отсчет заменяется соответствующим кодовым словом, символы которого имеют два значения - 0 и 1 (рис. 2.1).

Типичными представителями устройств аналоговой электроники являются устройства связи, радиовещания, телевидения. Общие требования, предъявляемые к аналоговым устройствам, - минимальные искажения. Стремление выполнить эти требования приводит к усложнению электрических схем и конструкции устройств. Другая проблема аналоговой электроники - достижение необходимой помехоустойчивости, ибо в аналоговом канале связи шумы принципиально неустранимы.

Цифровые сигналы формируются электронными схемами, транзисторы в которых либо закрыты (ток близок к нулю), либо полностью открыты (напряжение близко к нулю), поэтому на них рассеивается незначительная мощность и надежность цифровых устройств получается более высокой, чем аналоговых.

Цифровые устройства более помехоустойчивы, чем аналоговые, так как небольшие посторонние возмущения не вызывают ошибочного срабатывания устройств. Ошибки появляются только при таких возмущениях, при которых низкий уровень сигнала воспринимается как высокий, или наоборот. В цифровых устройствах можно также применить специальные коды, позволяющие исправить ошибки. В аналоговых устройствах такой возможности нет.

Цифровые устройства нечувствительны к разбросу (в допустимых пределах) параметров и характеристик транзисторов и других элементов схем. Безошибочно изготовленные цифровые устройства не нужно настраивать, а их характеристики полностью повторяемы. Все это очень важно при массовом изготовлении устройств по интегральной технологии. Экономичность производства и эксплуатации цифровых интегральных микросхем привела к тому, что в современных радиоэлектронных устройствах цифровой обработке подвергаются не только цифровые, но и аналоговые сигналы. Распространены цифровые фильтры, регуляторы, перемножители и др. Перед цифровой обработкой аналоговые сигналы преобразуются в цифровые с помощью аналого-цифровых преобразователей (АЦП). Обратное преобразование - восстановление аналоговых сигналов по цифровым - выполняется с помощью цифроаналоговых преобразователей (ЦАП).


При всем многообразии задач, решаемых устройствами цифровой электроники, их функционирование происходит в системах счисления, оперирующих всего двумя цифрами: нуль (0) и единица (1).

Работа цифровых устройств обычно тактируется достаточно высокочастотным генератором тактовых импульсов. В течение одного такта реализуется простейшая микрооперация - чтение, сдвиг, логическая команда и т. п. Информация представляется в виде цифрового слова. Для передачи слов используются два способа - параллельный и последовательный. Последовательное кодирование применяется при обмене информацией между цифровыми устройствами (например, в компьютерных сетях, модемной связи). Обработка информации в цифровых устройствах реализуется при использовании параллельного кодирования информации, обеспечивающего максимальное быстродействие.

Элементную базу для построения цифровых устройств составляют интегральные микросхемы (ИМС), каждая из которых реализуется с использованием определенного числа логических элементов - простейших цифровых устройств, выполняющих элементарные логические операции.

Различают четыре вида сигналов s(t): непрерывный непрерывного времени, непрерывный дискретного времени, дискретный непрерывного времени и дискретный дискретного времени .

Непрерывные сигналы непрерывного времени называют сокращенно непрерывными (аналоговыми) сигналами. Они могут изменяться в произвольные моменты, принимая любые из непрерывного множества возможных значении (рис. 1.3). К таким сигналам относится и известная всем синусоида.

Рис. 1.3 Непрерывный сигнал

Рис. 1.4 Непрерывный сигнал дискретною времени

Непрерывные сигналы дискретного времени могут принимать произвольные значения, но изменяться только в определенные, наперед заданные (дискретные) моменты (рис. 1.4).

Дискретные сигналы непрерывного времени отличаются тем, что они могут изменяться в произвольные моменты, но их величины принимают только разрешенные (дискретные) значения (рис. 1.5).

Дискретные сигналы дискретного времени (сокращенно дискретные) (рис. 1.6) в днекретные моменты времени могут принимать только разрешенные (днекретные) значения.

Сигналы, формируемые на выходе преобразователя дискретного сообщения в сигнал, как правило, являются по информационному параметру дискретными, т. е. описываются функцией дискретного времени и конечным множеством возможных значений. В технике передачи данных такие сигналы называют цифровыми сигналами данных (ЦСД). Параметр сигнала данных, изменение которого отображает изменение сообщения, называется представляющим (информационным) . На рис. 1.7 изображен ЦСД, представляющим параметром которого является амплитуда, а множество возможных значений представляющего параметра равно двум Часть цифрового сигнала данных, отличающаяся от остальных частей значением одного из своих представляющих. параметров, называется элементом ЦСД.

Фиксируемое значение состояния представляющею параметра сигнала называется значащей позицией. Момент, в который происходит смена значащей позиции сигнала, называется значащим (ЗМ).

Рис. 1.5 Дискретный сигнал непрерывною времени

Рис. 1.6 Дискретный сигнал

Рис. 1.7 Цифровой сигнал данных

Интервал времени между двумя соседними значащими моментами сигнала называется значащим (ЗИ)

Минимальный интервал времени то, которому равны значащие интервалы времени сигнала, называется единичным (интервалы а-б, б-в и другие на рис 1 7). Элемент сигнала, имеющий длительность, равную единичному интервалу времени, называется единичным (е э)

Термин единичный элемент является одним из основных в технике передачи данных. В телеграфии ему соответствует термин элементарная посылка

Различают изохронное и анизохронные сигналы данных Для изохронного сигнала любой значащий интервал времени равен единичному интервалу или их целому числу. Анизохронными называются сигналы, элементы которых могут иметь любую длительность, но не менее чем Другой особенностью анизохронных сигналов является то, что они могут отстоять друг от друга во времени на произвольном расстоянии


Цель рассказа показать в чем суть понятия "сигнал", какие распространённые сигналы существуют и какие у них общие характеристики.

Что такое сигнал? На этот вопрос даже маленький ребёнок скажет, что это "такая штука, с помощью которой можно что-нибудь сообщить". Например, с помощью зеркала и солнца можно передавать сигналы на расстояние прямой видимости. На кораблях, сигналы когда-то передавали с помощью флажков-семафоров. Занимались этим специально обученые сигнальщики. Таким образом с помощью таких флажков передавалась информация. Вот как можно передать слово "сигнал":

В природе существует огромное множество сигналов. Да по сути что угодно может быть сигналом: оставленная на столе записка, какой-нибудь звук -- могут служить сигналом к началу определённого действия.

Ладно, с такими сигналами всё понятно поэтому перейду к электрическим сигналам, которых в природе не меньше чем любых других. Но их хотя бы можно как-то условно разбить на группы: треугольный, синусоидальный, прямоугольный, пилообразный, одиночный импульс и т.д. Все эти сигналы названы так за то, как они выглядят, если их изобразить их на графике.

Сигналы могут быть использованы как метроном для отсчета тактов (в качестве тактирующего сигнала), для отсчета времени, в качестве управляющих импульсов, для управления двигателями или для тестирования оборудования и передачи информации.

Характеристики эл. сигналов

В некотором смысле электрический сигнал -- это график, отражающий изменение напряжения или тока с течением времени. Что по-русски означает: если взять карандаш и по оси Х отметить время, а по Y напряжение или ток, и отметить точками соответствующие значения напряжения в конкретные моменты времени, то итоговое изображение будет показывать форму сигнала:

Электрических сигналов очень много, но их можно разбить на две большие группы:

  • Однонаправленные
  • Двунаправленные

Т.е. в однонаправленных ток течет в одну сторону (либо не течет вообще), а в двунаправленных ток является переменным и протекает то "туда", то "сюда".

Все сигналы, независимо от типа, обладают следующими характеристиками:

  • Период -- промежуток времени, через который сигнал начинает повторять себя. Обозначается чаще всего T
  • Частота -- обозначает сколько раз сигнал повториться за 1 секунду. Измеряется в герцах. К примеру 1Гц = 1 повторение в секунду. Частота является обратным значением периода ( ƒ = 1/T )
  • Амплитуда -- измеряется в вольтах или амперах (в зависимости от того какой сигнал: ток или напряжение). Амплитуда обозначает "силу" сигнала. Как сильно отклоняется график сигнала от оси Х.

Виды сигналов

Синусоида


Думаю, что представлять функцию, чей график на картинке выше нет смысла - это хорошо тебе известная sin(x). Её период равен 360 o или 2pi радиан (2pi радиан =360 o).

А если разделить поделить 1 сек на период T, то ты узнаешь сколько периодов укалдывается в 1 сек или, другими словами, как часто период повторяется. То есть ты определишь частоту сигнала! Кстати, она указывается в герцах. 1 Гц = 1 сек / 1 повтор в сек

Частота и период обратны друг другу. Чем длинней период, тем меньше частота и наоборот. Связь между частотой и периодом выражается простыми соотношениями:


Сигналы, которые по форме напоминают прямоугольники, так и называют "прямоугольные сигналы". Их условно можно разделить на просто прямоугольне сигналы и меандры. Меандр - это прямоугольный сигнал, у которого длительность импульса и паузы равны. А если сложить длительность паузы и импульса, то получим период меандра.

Обычный прямоугольный сигнал отличается от меандра тем, что имеет разную длительность импульса и паузы (отсутствие импульса). Смотри картинку ниже -- она скажет лучше тысячи слов.


Кстати, для прямоугольных сигналов существует еще два термина, которые следует знать. Они обратны друг другу (как период и частота). Это скажность и коээффициент заполнения. Скажность (S)равняется отношению периода к длительности импульса и наоборот для коэфф. заполнения.

Таким образом меандр - это прямоугольный сигнал со скважностью равной 2. Так как у него период в два раза больше длительности импульса.

S — скважность, D — коэффициент заполнения, T — период импульсов, — длительность импульса.

Кстати, на графиках выше показаны идеальные прямоугольные сигналы. В жизни они выглядят слегка иначе, так как ни в одном устройстве сигнал не может измениться абсолютно мгновенно от 0 до какого-то значения и обратно спуститься до нуля.

Если подняться на гору, а затем сразу спуститься и записать изменение высоты нашего положения на графике, то получим треугольный сигнал. Груое сравнение, но правдивое. В треугольный сигналах напряжение (ток) сначала возрастает, а затем тут же начинает уменьшаться. И для классического треугольного сигнала время возрастания равно времени убывания (и равно половине периода).

Если же у такого сигнала время возрастания меньше или больше времени убывания, то такие сигналы уже называют пилообразными. И о них ниже.


Пилообразный сигнал

Как я уже писал выше, несимметричный треугольный сигнал называется пилообразным. Все эти названи условны и нужны просто для удобства.

Понравилась статья? Поделиться с друзьями: