Резонансный полумост на IR2153. Полумостовой квазирезонансный блок питания

В статье описываются перспективные методы повышения эффективности импульсных источников питания. В частности, квазирезонансный метод управления силовыми транзисторами и метод синхронного выпрямления. Описаны особенности использования данных методов, показана практическая реализация на контроллере Renesas HA16163.

Современная элементная база позволяет получить в классических ШИМ решениях довольно высокий КПД – до ~95%. В бюджетных конструкциях, где не важны массогабаритные характеристики, довольствуются более скромными характеристиками. Но существуют области применения, где габариты и КПД ставятся на первое место – источники питания для оборонной промышленности, для летательных аппаратов, питание серверов (пассивное охлаждение), малогабаритные источники для ноутбуков, телекоммуникаций и т.д. Основные потери в классическом ШИМ импульсном источнике питания распределяются примерно следующим образом – 50% силовые ключи, 40% - выходной выпрямитель, 10% - трансформатор и снабберы. Как видно, основные потери в виде тепла рассеиваются в ключевых элементах и выходном выпрямителе. Динамические потери в ключевых транзисторах значительно уменьшаются за счёт мягкого режима переключения (резонансный и квазирезонансный метод управления). Это позволяет использовать более «медленные» транзисторы на повышенных частотах преобразования или используя штатные массовые транзисторы получать частоты преобразования в несколько раз выше чем в стандартной ШИМ топологии. При переключении ключей при нулевом токе (ПНТ) или при нулевом напряжении (ПНН) значительно снижаются потери на снабберных элементах, в некоторых случаях возможно даже отказаться от снабберов.

Использование квазирезонансной схемотехники даёт следующие преимущества – более высокий КПД чем у классических ШИМ схем, широкий диапазон нагрузок (в отличие от резонансной схемы с регулированием частоты). В квазирезонансной схеме, в отличие от резонансной, колебательный контур не аккумулирует энергию, а лишь только участвует в передаче энергии в нагрузку. Это позволяет не использовать внушительные по размерам компоненты резонансного контура. Однако, квазирезонансная схема имеет свой недостаток – при снижении нагрузки схема переходит в режим жёсткого переключения и эффективность падает. В диапазоне нагрузок, в котором происходит мягкое переключение, схема излучает узкий спектр помех, который легче подавить.

Потери в выходном выпрямителе в диапазоне от единиц до сотен ватт, при выходных напряжениях 1.8-80В можно существенно снизить за счёт синхронного выпрямления.

Рассмотрим схему квазирезонансного преобразователя с синхронным выпрямлением. На рис 7. приведена временная диаграмма, поясняющая работу преобразователя.

Момент времени 1 – рис.1
В момент t0 транзисторы S3 и S6 открыты, напряжение питания Vin подключено через дроссель Lr к первичной обмотке трансформатора, на вторичной обмотке появляется напряжение пропорциональное напряжению в первичной обмотке. Ключи синхронного выпрямителя S14S15 выключены, S16S17 – включены. Напряжение с первичной обмотки через дроссель L1 поступает на нагрузку.

Момент времени 2 – рис.2
В момент t1 транзистор S3 включён. При выключении транзистора S6, на резонансном дросселе Lr происходит выброс напряжения сомоиндукции. Ключи S14S15 и S16S17 выходного выпрямителя включены, тем самым шунтируя выходную обмотку, энергия запасённая в резонансном дросселе Lr переходит в выходная ёмкость транзистора S6 - C12, С12 заряжается со скоростью где N = N1/N2 – коэффициент трансформации Iнагр – ток нагрузки, C12 – выходная ёмкость транзистора

Рис.1


Рис.2

Момент времени 3 – рис.3
В момент t2 происходит включение транзистора S4. К этому времени выходная ёмкость транзистора S6-C12 заряжается до напряжения питания Vin (чтобы переключение происходило при нулевом напряжении с минимальными потерями). Задержка включения транзистора S4 -

Момент времени 4 – рис.4
В момент времени t3 транзистор S3 выключается, происходит разряд выходной ёмкости транзистора S5-C11. Происходит переход энергии из конденсатора C11 в резонансный дроссель Lr. В контуре происходят свободные гармонические колебания. Собственная резонансная частота контура


Рис.3


Рис.4

Момент времени 6 – рис.6
В момент времени t5 при достижении нулевого напряжения на ёмкости C11 включается транзистор S5. Ток в выходной обмотке меняет своё направлении, напряжение вторичной обмотки подключается к нагрузке через дроссель L2.


Рис. 5


Рис.6


Рис.7

Производитель электронных компонентов Renesas производит квазирезонансный ZVS контроллер HA16163, имеющий 4 слаботочных выхода для управления мостовой схемой преобразователя и 2 выхода для управления ключами синхронного выпрямителя. Микросхема позволяет строить на её основе преобразователи с частотой переключения 1МГц (2МГц частота осциллятора)!

Микросхема имеет следующие функции:

  • мягкий старт;
  • возможность через дополнительный вход микросхемы включать/выключать преобразователь;
  • вход внешней синхронизации;
  • поцикловое ограничение тока нагрузки;
  • полное отключение микросхемы при коротком замыкании;
  • микросхема имеет встроенный усилитель ошибки;
  • микросхема содержит 3 вывода, позволяющие программировать задержки на выходах A и B, C и D, E и F.

На рис.8 приведена типовая схема включения. В качестве драйверов для выходов A, B, C, D можно использовать интегральные полумостовые драйверы, широкая номенклатура представлена у International Rectifier. Также можно использовать драйверы на дискретных элементах с использованием трансформаторной развязки. В качестве драйверов для выходов E и F необходимо использовать либо оптические драйверы либо использовать разделительные трансформаторы (исходя из требований изоляции первичная - вторичная сторона преобразователя).


Рис.8

Отметим важные моменты, которые необходимо учесть при проектировании квазирезонансного преобразователя

Полумостовой квазирезонансный блок питания

Для улучшения характеристик импульсных блоков питания, собранных на основе мостовых и полумостовых преобразователей, в частности, уменьшения вероятности возникновения сквозного тока и увеличения КПД, авторы предлагают переводить подобные источники в квазирезонансный режим работы. В описываемой статье приведен практический пример такого блока питания.

Часто для уменьшения габаритов и массы источники питания (ИП) с сетевым трансформатором заменяют импульсными преобразователями напряжения. Выигрыш от этого очевиден: меньшие масса и габариты, существенно меньший расход меди для моточных изделий, высокий КПД ИП. Однако у импульсных ИП есть и недостатки: плохая электромагнитная совместимость, возможность появления сквозного тока через транзисторы в двухтактных преобразователях, необходимость введения цепей защиты от перегрузки по току, сложность запуска на емкостную нагрузку без принятия специальных мер по ограничению зарядного тока.

Рассмотрим на примере двухтактного полумостового автогенераторного преобразователя напряжения , как в определенной мере можно исключить или уменьшить эти недостатки, изменив режим его работы. Переведем преобразователь в квазирезонансный режим работы, введя резонансный контур . Форма тока через первичную обмотку импульсного трансформатора в этом случае показана на рис. 1.

На рис. 2 приведены формы напряжения и тока для одного из коммутирующих транзисторов. Из рисунков видно, что преобразователь работает в квазирезонансном режиме - сквозной ток в этом случае отсутствует.

Напряжение на базе коммутирующего транзистора уменьшается и к окончанию импульса становится равным нулю. Таким образом, переход на квазирезонансный режим работы полностью устраняет динамические потери в коммутирующих транзисторах и проблемы, связанные с электромагнитной совместимостью чувствительных приборов с импульсным ИП, поскольку спектр генерируемых колебаний резко сужается.

Полумостовой преобразователь отличается от двухтактного мостового меньшим числом используемых транзисторов; от двухтактного со средним выводом - вдвое меньшим напряжением на транзисторах. Автогенераторный преобразователь отличается от преобразователей с задающим генератором, прежде всего, минимальным числом элементов, максимально возможным КПД, а применение насыщающегося вспомогательного трансформатора гарантированно исключает возможность появления сквозного тока.

Схема полумостового квазирезонансного ИП, лишенного перечисленных недостатков, показана на рис. 3.

(нажмите для увеличения)

Основные технические характеристики

  • Интервал изменения напряжения питающей сети, В....198...264
  • Максимальный КПД, %......92
  • Выходное напряжение, В, при сопротивлении нагрузки 36 Ом......36
  • Рабочий интервал частоты преобразования, кГц......12...57
  • Максимальная выходная мощность, Вт......70
  • Максимальная амплитуда пульсаций выходного напряжения с рабочей частотой, В......2,2

ИП содержит следующие узлы: помехоподавляющий фильтр С1C2L1, который предотвращает проникновение в питающую сеть высокочастотных пульсаций, создаваемых преобразователем; сетевой выпрямитель VD1 с фильтрующим конденсатором C3; цепи защиты от перегрузки и замыканий в нагрузке R1R2VD2K1U1VD3VD4R6R7C7. Цепь защиты потребляет незначительный ток, поэтому мало влияет на общий КПД источника, но при необходимости КПД можно несколько увеличить, заменив стабилитрон VD2 более высоковольтным. Резисторы R6 и R7 образуют делитель напряжения, необходимый для включения излучающего диода тиристорного оптрона. Если эти постоянные резисторы заменить одним переменным, можно в весьма широких пределах регулировать порог срабатывания защиты. Если предполагается питать нагрузку с большой емкостью (более 5000 мкФ), для исключения ложных срабатываний защиты следует увеличить емкость конденсатора С7, однако время ожидания до включения источника в этом случае возрастет.

Элементы R3, R4, С4, С5 образуют делитель напряжения. Резисторы R3, R4 необходимы для разрядки конденсаторов фильтра C3 и делителя С4С5 после выключения блока питания. Конденсатор С6 и дроссель L2 - резонансная цепь. Запускающая цепь точно такая же, как и в устройстве, описанном в статье . Она состоит из транзистора VT3, резисторов R10-R12 и конденсатора С10. Транзистор VT3 работает в лавинном режиме. Запускающий импульс открывает транзистор VT2, обеспечивая первоначальную асимметрию.

Диоды VD5-VD8 - выходной выпрямитель с фильтрующими конденсаторами C8, C9. Светодиод HL1 индицирует наличие напряжения на выходе ИП. Автогенерация колебаний происходит в результате действия положительной обратной связи с обмотки III трансформатора Т1 на обмотку III трансформатора Т2 через токоограничивающий резистор R9. При уменьшении его сопротивления частота преобразования снижается, что ведет к смещению максимума КПД источника в сторону большей мощности нагрузки.

В устройстве применены конденсаторы К73-17 (C1, C2, C6, C9, С10), К73-11 (C4, C5), К50-32 (C3), К50-24 (C7, C8). Все резисторы - C2-23. Вместо указанных конденсаторов и резисторов возможно применение других компонентов, однако конденсаторы следует выбирать с минимальным тангенсом угла диэлектрических потерь в рабочем интервале частоты преобразования ИП.

Диодный мост VD1 - любой с допустимым прямым током более 1 А и допустимым обратным напряжением не менее 400 В, например BR310. Не исключено и применение дискретных диодов, например КД202Р, соединенных по мостовой схеме. В устройстве лучше всего использовать транзистор КТ315Г (VT3) - с ним запускающая цепь будет работать сразу же, транзистор КТ315Б придется подбирать, а транзисторы КТ315А, КТ315В лучше не применять. Транзисторы КТ826В (VT1, VT2) заменимы любыми из серий КТ826 или КТ812А, КТ812Б. Вследствие малых потерь транзисторы можно не устанавливать на теплоотводы. Диоды выходного выпрямителя КД213А (VD5-VD8) допустимо заменить на КД213Б, КД213В или серий КД2997, КД2999. Их следует установить на теплоотвод с площадью охлаждающей поверхности не менее 10 см2.

В ИП применено электромагнитное реле постоянного тока GBR10.1-11.24 с рабочим напряжением 24 В, способное коммутировать переменный ток 8 А в цепях с напряжением до 250 В. Его можно заменить любым другим с допустимым коммутируемым переменным током не менее 1 А в цепях с напряжением 250 В. Однако желательно применить реле с минимальным током включения для повышения КПД блока питания, поскольку чем меньше ток срабатывания, тем большее сопротивление должны иметь резисторы R1, R2 и меньшая мощность будет рассеиваться на них.

Дроссели L1, L2 и трансформатор Т1 использованы готовые - от старой вычислительной машины ЕС1060: L1 - И5, L2 - 4777026 или 009-01, Т1 - 052-02. Их можно изготовить и самостоятельно. Дроссель L1 наматывают (одновременно две обмотки) на кольцевом магнитопроводе К28х16х9 из феррита (например, марок М2000НМ-А или М2000НМ1-17) или альсифера. Его обмотки содержат по 315 витков провода ПЭВ-2 0,3.

Резонансный дроссель L2 наматывают на кольцевом магнитопроводе К20х10х5 из феррита М2000НМ-А. Его обмотка содержит 13 витков провода ПЭВ-2 0,6.

Трансформатор T1 наматывают на кольцевом магнитопроводе К45х28х8 из феррита М2000НМ1-17. Обмотка I содержит 200 витков провода ПЭВ-2 0,6, обмотка II - 35 витков провода ПЭВ-2 1, обмотка III - 5 витков провода ПЭВ-2 0,6. Порядок намотки обмоток на магнитопровод произвольный. Между обмотками необходимо проложить слой изоляции, например, фторопластовой ленты. Кроме того, трансформатор следует пропитать, например, парафином от свечей или церезином. Это не только повысит электрическую прочность изоляции, но и уменьшит гул, создаваемый источником на холостом ходу.

Трансформатор T2 наматывают на кольцевом магнитопроводе К20х10х5 из феррита М2000НМ-А. Обмотки I и II содержат по семь витков провода ПЭВ-2 0,3 (их наматывают одновременно в два провода), а обмотка III - девять витков провода ПЭВ-2 0,3.

Конструкция ИП может быть произвольная, взаимное расположение элементов на плате не критично. Важно лишь обеспечить хороший приток воздуха к полупроводниковым приборам естественной конвекцией или установить ИП внутри питаемого устройства вблизи вентилятора.

В налаживании описанный ИП практически не нуждается, хотя стоит удостовериться, что преобразователь работает в квазирезонансном режиме. Для этого к выходу блока питания подключают эквивалент нагрузки - резистор мощностью 100 Вт и сопротивлением 36 Ом. Последовательно с конденсатором С6 включают дополнительный резистор сопротивлением 0,1... 1 Ом и мощностью 1...2 Вт. К дополнительному резистору подключают щупы осциллографа: общий - к средней точке делителя напряжения R3R4C4C5, сигнальный - к конденсатору С6. Необходимо убедиться, что осциллограф гальванически не связан с сетью. Если связан, к сети его следует подключить через разделительный трансформатор с коэффициентом трансформации 1:1. В любом случае необходимо соблюдать правила техники безопасности. Подав питание на ИП, убеждаются в наличии колоколообразных импульсов тока с паузой на нуле. Если форма импульсов отличается от показанной на рис. 1, необходимо подобрать число витков дросселя L2 до получения резонанса.

На дополнительном резисторе сопротивлением 0,1 Ом амплитуда импульсов должна быть около 0,1 В. Теперь следует сравнить форму тока и напряжения на коммутирующем транзисторе VT2 с приведенными на рис. 2 графиками. Если они близки по форме, ИП работает в квазирезонансном режиме.

Порог срабатывания защиты можно изменить. Для этого подбирают сопротивление резистора R7 так, чтобы защита срабатывала при требуемом токе нагрузки. Если необходимо, чтобы ИП отключался при мощности в нагрузке меньше 70 Вт, сопротивление резистора R7 следует уменьшить.

Для ограничения тока зарядки конденсатора C3 в момент включения рекомендуем в разрыв любого сетевого провода подключить резистор сопротивлением 5,6... 10 Ом мощностью 2Вт.

Литература

  1. Барабошкин Д. Усовершенствованный экономичный блок питания. - Радио, 1985, № 6, с. 51,52.
  2. Коновалов Е. Квазирезонансный преобразователь напряжения. - Радио, 1996, №2, с. 52-55.

Смотрите другие статьи раздела .

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

в идеале метод, использующий широтно-импульсную модуляцию (ШИМ), является ответом на поиски практически совершенного стабилизированно­го источника питания. Мы уже говорили, что в импульсном источнике ключ либо включен, либо выключен и управление осуществляется с нулевым рас­сеянием мощности, в отличие от линейного стабилизатора, где стабилиза­ция происходит из-за рассеяния мощности в проходном элементе. В реаль­ных условиях, широтно-импульсная модуляция дает разумный подход к переключению без потерь за счет более низкой частоты переключения, на­пример, в диапазоне 20 – 40 кГц. Глядя на ситуацию с другой стороны, может сказать, почему этот частотный диапазон так долго был популярен.

От самого начала стабилизации с помощью ШИМ, конструкторы пы­тались продвигаться в сторону более высоких частот, поскольку при этом можно уменьшить размеры, вес и стоимость магнитного сердечника и конденсаторов фильтра. При высокой частоте переключения появляются и другие преимущества. Используя более высокие частоты можно ожи­дать уменьшение радиопомех и электромагнитных шумов; можно ожи­дать меньших проблем при экранировке, развязке, изоляции и ограниче-

НИИ в схеме. Можно также ожидать более быстрого срабатывания, а так­же снижения выходного сопротивления и величины пульсаций.

Главным препятствием на пути применения более высоких частот были практические трудности создания быстрых и достаточно мощных переключателей. Из-за того, что невозможно достичь мгновенного включения и выключения коммутатора, на нем во время переключения имеется напряжение и одновременно через него протекает ток. Другими словами, трапецеидальные, а не прямоугольные колебания характеризу­ют процесс переключения. Это, в свою очередь, приводит к потерям пе­реключения, которые сводят на нет теоретически высокий к.п.д. идеаль­ного коммутатора, который мгновенно включается, имеет нулевое сопротивление во включенном состоянии и мгновенно выключается. На рис. 18.2 сравнивается ШИМ и режим переключения в резонансном ре­жиме, который будет рассмотрен подробнее.

Рис. 18.2. Осциллограммы, показывающие разницу между ШИМ и резонансным режимом. При ШИМ потери переключения появляются из-за одновременного протекания тока через коммутатор и наличия напряжения на нем. Обратите внимание, что эта ситуация отсутствует при резонансном режиме работы, который для стабилизации напря­жения использует частотную модуляцию (ЧМ).

Из вышесказанного очевидно, что на идеальном переключателе не дол­жно быть никакого падения напряжения во время включенного состояния. Все эти рассуждения говорят о том, что высокий к.п.д. был трудно дости­жимой задачей, особенно при высоких частотах переключения до тех пор, пока не был достигнут прогресс в создании импульсных полупроводнико­вых приборов. Следует указать также, что одновременно был необходим прогресс в создании других устройств, таких как диоды, трансформаторы и конденсаторы. Надо отдать должное работникам всех областей техники за то, что частота переключения при использовании широтно-импульсной модуляции была повышена до 500 кГц. Тем не менее, на высоких часто­тах, скажем на частоте 150 кГц, лучше рассмотреть другой метод. Итак, мы приходим к резонансному режиму работы источника питания.

Стабилизированный источник питания, использующий резонансный режим, действительно представляет собой большой скачок вперед в раз­витии технологии. Хотя надо сказать, что использование резонансных яв­лений в инверторах, преобразователях и источниках питания предшеству­ет эре полупроводников. Оказалось, что при использовании резонансных явлений часто удавалось получить хорошие результаты. Например, в пер­вых телевизорах необходимые высокие напряжения для кинескопа полу­чали с помощью радиочастотного источника питания. Это был работаю­щий на частоте от 150 до 300 кГц генератор синусоидальных колебаний на электронной лампе, в котором повышение переменного напряжения достигалось в резонансном радиочастотном трансформаторе. По суще­ству подобные схемы все еще используются для создания напряжений, по крайней мере, несколько сотен тысяч вольт для различных промышлен­ных и научно-исследовательских целей. Более высокие напряжения часто достигаются благодаря совместному применению резонансного режима работы и диодного умножителя напряжения.

Также давно было известно, что резонансные выходные цепи инвер­тора стабилизируют работу электродвигателей и сварочного оборудова­ния. Обычно в разрыв провода, ведущего от источника постоянного на­пряжения к инвертору, включалась катушка с большой индуктивностью. При этом инвертор ведет себя по отношению к нагрузке как источник тока, что дает возможность легче удовлетворить условию существования резонансных явлений. В этом случае существующие тиристорные инвер­торы правильнее назвать квазирезонансными - колебательный контур периодически подвергается ударному возбуждению, но непрерывные ко­лебания отсутствуют. Между импульсами возбуждения, колебательный контур отдает запасенную энергию в нагрузку. Примеры упоминавшихся схем приведены на рис. 18.3, 18.4 и 18.5.

Из сказанного выше должно бьггь ясно, что широкое использование ре­зонансного режима работы началось после создания специализированных ИС управления. Эти ИС освободили конструкторов от проблем со сбоями, кото­рые неизбежно сопутствуют стремлению использовать резонансный режим на частотах несколько сот килогерц ити несколько МГц, где малые размеры компонент могут дать заметное сокращение габаритов, веса и стоимости.

Рис. 18.3. Пример резонансного высоковольтного источника, работа­ющего в радиочастотном диапазоне. Это восстановленная старая схема использует электронные лампы в генераторе Мейснера. Рабочая частота определяется повышающей обмоткой Z1 и ее собственной распределенной емкостью. Никакой стабилизации частоты не предусматривается.

Рис. 18.4. Пример запускаемого током инвертора с резонансным кон­туром на выходе. Обратите внимание на присутствие катушки с боль­шой индуктивностью L в цепи питания и конденсатора, входящего в состав резонансного контура на выходе. Подобный метод применим и к инверторам с самовозбуждением. Эти схемы обычно не имеют стаби­лизации.

Рис. 18.5. Пример квази-резонансного инвертора с одним тиристором. Выбирая соответствующий тиристор, можно получить выходную мощность нескольких киловатт и частоту переключения около 30 кГц. Если частота пульсаций немного ниже резонансной частоты последо­вательного XС-контура, то на нагрузке будет хорошее синусоидальное напряжение. Стабилизация в схеме отсутствует. General Electric Semiconductor Products Dept.

Интересно, что резонансный стабилизатор напряжения имеет много общего с давно популярной схемой широтно-импульсной модуляции (ШИМ). Действительно, согласно структурной схеме, источник импуль­сов постоянной длительности и переменной частоты вместе с резонанс­ным «контуром» используется вместо схемы ШИМ. В процессе работы из-за наличия ZС-контура через коммутатор или протекает ток, или к нему приложено напряжение, имеющие форму отрезков синусоиды. Фор­ма сигналов при переключении, в отличие от высокочастотных ШИМ схем, такова, что никогда не бывает одновременного присутствия напря­жения на коммутаторе и протекания через него тока. Поэтому потери коммутации пренебрежимо малы даже при высоких частотах.

Рис. 18.6 иллюстрирует резонансный режим работы. Сигнал ошибки получен также, как в источниках питания с ШИМ, то есть как разность между выходным и опорным напряжениями. Это напряжение рассогла­сования поступает на генератор, управляемый напряжением, выходной сигнал которого запускает ждущий мультивибратор. Схема модуляции, по существу, является преобразователем напряжение – частота. Им­пульсы ждущего мультивибратора, имеющие фиксированную длитель­ность и переменную частоту повторения, поступают на вход коммутато-ра(ов). Часто на выходе ждущего мультивибратора включают усилитель мощности, чтобы обеспечить более высокое мгновенное значение тока и низкое сопротивление. В качестве коммутаторов обычно применяется один или два мощных МОП-транзистора.

Выход коммутатора(ов) связан с резонансным Z С-контуром и выход­ным трансформатором. Видно, что амплитуда почти синусоидального напряжения, приложенного к первичной обмотке трансформатора, зави­сит от близости резонансной частоты ZС-контура к величине, обратной фиксированной длительности импульсов переменной частоты, поступа­ющих от коммутатора. Таким образом, стабилизацию постоянного вы­ходного напряжения можно реализовать с помощью частотной модуля­ции. Слишком высокая добротность Z С-контура будет препятствовать выделению мощности, а очень низкая вызовет чрезмерно большие пи­ковые значения тока в коммутаторе.

Рис. 18.6. Упрощенная схема резонансного стабилизированного источ­ника питания. В первом приближении можно считать, что здесь вместо широтно-импульсного модулятора в популярном ШИМ стабилизаторе применен преобразователь напряжение – частота.

Резонансный режим может быть получен разными путями: можно использовать или последовательный, или параллельный L С-контур. А номинальная рабочая частота может быть как ниже, так и выше соб­ственной резонансной частоты Z С-контура. В любом случае стабилиза­ция требует работы на падающем участке резонансной кривой. На рис. 18.6, индуктивность первичной обмотки выходного трансформатора дос­таточно высока, так что практически не влияет на резонансную частоту Z С-контура.

Для того, чтобы избежать недоразумений из-за неаккуратных выска­зываний в технической литературе, хорошо бы вспомнить следующие факты, относящиеся к резонансным стабилизаторам:

В резонансном Z С-контуре колебания всегда происходят на его ре­зонансной частоте независимо от частоты импульсов, с помощью кото­рых осуществляется ударное возбуждение. Однако в большинстве случаев условия для существования свободных колебаний отсутствуют. На схему выпрямителя поступают полупериоды синусоидального колебания.

Одна из наиболее популярных схем использует последовательный резонансный контур, в котором выходную мощность получают от кон­денсатора через высокоомную первичную обмотку выходного трансфор­матора. Такой источник соответственно называется преобразователем или стабилизатором с последовательным резонансом и параллельной нагрузкой. К сожалению, иногда об этих устройствах говорят как о схемах с парал­лельным резонансом (рис. 18.7В).

В идеале существует два способа получения почти нулевых потерь при коммутации. Один с переключением при нулевом токе, который яв­ляется наиболее популярным и допускает работу с частотами около 2 МГц, а другой с переключением при нулевом напряжении, позволяющий работать на частоте до 10-МГц. Переключение при нулевом токе использует для ударного возбуждения контура импульсы постоянной длительности и переменной частотой повторения. Фиксированный интервал времени между импульсами используются в режиме переключения с нулевым на­пряжением.

Чаще всего (особенно при переключении с нулевым током) диапа­зон изменения частоты распространяется от низких частот до 80 % от ре­зонансной частоты контура. Это обеспечивает время, достаточное для того, чтобы ток катушки индуктивности уменьшился до нуля или стал от­рицательным. Импульс, определяющий время включенного состояния.

заканчивается, когда ток принимает отрицательное значение; момент его окончания не очень критичен. Отрицательный ток катушки индуктивнос­ти подразумевает, что ток теперь течет не через мощный МОП-транзис­тор, а через фиксирующий диод. Длительность импульса определяется RC-цепью, подключенной к управляющей ИС. Величины R и С удобно определять по графикам, предоставляемым изготовителем ИС. Типичные данные, иллюстрирующие выбор величины RC для определения длитель­ности импульса, а также частоты генератора показаны на рис. 18.8.

Рис. 18.8. Примеры графиков для определения параметров резонанс­ного стабилизированного источника. Эти кривые соответствуют ИС GP605, но типичны для схем других изготовителей. (А) Допустимые комбинации емкости и сопротивления в зависимости от максимальной частоты генератора. (В) Допустимая емкость в зависимости от минимальной частоты генератора. (С) Комбинация резистора и емкости для выбранной длительности импульса. В зависимости от того, имеем дело со схемой А или В, ЛС-цепи будут разными. Gennum Соф.

Надо быть уверенным, что «частота переключения» соответствует частоте, с которой импульсы поступают на резонансный контур. Не обя­зательно это частота генератора в управляющей ИС. В двухтактном им­пульсном источнике питания частота генератора будет вдвое выше часто­ты переключений. Для однотактных ИИП эти частоты обычно совпадают.

К переключению без потерь приближается источник, работающий в прерывистом режиме. Это просто означает, что на каждый импульс дол­жен быть только один период колебаний в Z С-контуре. Практически это требует наличия «мертвого времени» между завершением одного цикла колебания и появлением следующего импульса. Вот почему частота по­вторения импульсов не должна приближаться к резонансной частоте

LC-контура. Удоалетворсние этого требования приводит к некоторому уменьшению выходной мощности.

Стабилизация основана на том, что энергия, запасенная в? С-кон­туре максимальна, когда частота повторения импульсов, осуществляющих ударное возбуждение ZC-контура, близка к его резонансной частоте. От­клонение частоты импульсов от этого оптимального условия, приводит к тому, что будет получена меньшая мощность. Поскольку резонансная ча­стота остается постоянной, то для осуществления стабилизации изменя­ется упомянутое выше «мертвое время».

В резонансные источники питания часто вводят защиту по току, что делает их похожими на источники с ШИМ, имеющими такую защи­ту. Действительно, можно найти ссылку на работу резонансного источ­ника S режиме ограничения тока. Однако имеется существенное отличие. В системе с ШИМ учитывается нарастание тока, и ограничение макси­мального тока источника происходит в любой момент в пределах всего цикла. В резонансном источнике, учитывается часть синусоидального ко­лебания; это допускает ограничение максимального тока ИИП, но не мгновенно. 8 обоих случаях доспигается защита, но в резонансных ис­точниках не так быстро или точно, как в источниках с ШИМ, имеющих токовую защиту. В источниках с ШИМ слежение за величиной тока реа­лизует стабилизацию с прямой связью; в резонансных источниках считы-ватше величины тока приводит к использованию метода выключения.

Последнее, но самое существенное, коммутаторы в резонансных ИИП не испытывают одновременного воздействия напряжения и тока во время процесса переключения. Это приводит к высокому к.п.д. со значи­тельным уменьшением р^ассеиваемой мощности в коммутаторах, что в свою О’щ^едь ©сдабляет температурные ароблемы, сптеобствуя высокой плотности компоновки элементов.

Резонансный трансформатор есть у каждого, но мы настолько к ним привыкли, что не замечаем как они работают. Включив радиоприемник, мы настраиваем его на радиостанцию, которую хотим принять. При надлежащем положении ручки настройки приемник будет принимать и усиливать колебания только тех частот, какие передает эта радиостанция, колебания других частот он не примет. Мы говорим, что приемник настроен.

Настройка приемника основана на важном физическом явлении резонанса. Вращая ручку настройки, мы изменяем емкость конденсатора, а стало быть и собственную частоту колебательного контура. Когда собственная частота контура радиоприемника совпадает с частотой передающей станции, наступает резонанс. Сила тока в контуре радиоприемника достигает максимума и громкость приема данной радиостанции - наибольшая

Явление электрического резонанса позволяет настраивать передатчики и приемники на заданные частоты и обеспечить их работу без взаимных помех. При этом происходит умножение электрической мощности входного сигнала в несколько раз

В электротехнике происходит то же самое

Подключим конденсатор к вторичной обмотке обычного сетевого трансформатора, при этом ток и напряжение данного колебательного контура окажутся сдвинутыми по фазе на 90°. Замечательно то, что трансформатор не заметит этого подключения и ток его потребления снизится.

Цитата от Гектора: "ни один ученый не мог себе вообразить, что секрет ZPE может быть выражен с помощью только трех букв – RLC!"

Резонансная система, состоящая из трансформатора, нагрузки R (в виде лампочки накаливания), батареи конденсаторов C (для настройки в резонанс), 2-канального осциллографа, катушки переменной индуктивности L (для точной установки ПУЧНОСТИ ТОКА в лампочке и пучности напряжения в конденсаторе). В резонансе радиантная энергия, начинает течь в цепи RLC. Для того, чтобы направить её в нагрузку R, необходимо СОЗДАТЬ СТОЯЧУЮ ВОЛНУ и точно совместить пучность тока в резонансном контуре с нагрузкой R.

Процедура: подключите первичную обмотку трансформатора к сети 220 В или к тому источнику напряжения, какое у вас есть. Путем настройки колебательного контура, за счёт ёмкости С, катушки переменной индуктивности L, сопротивления нагрузки R, Вы должны СОЗДАТЬ СТОЯЧУЮ ВОЛНУ, у которой пучность тока появится на юз R. В пучности тока подключена лампа 300 Вт и она горит в полный накал при нулевом напряжении!

КЗ виток в Доп. тр-ре не только нагревается до 400 °С, но вводит его сердечник в насыщение и сердечник также нагревается до 90°С, что можно использовать

Невероятная картина: машина дает ток, равный нулю, но распадающийся на два разветвления, по 80 Ампер в каждом. Не правда ли, недурной пример для первого знакомства с переменными токами?"

Максимальный эффект от применения резонанса в колебательном контуре можно получить при его конструировании с целью повышения добротности. Слово «добротность» имеет смысл не только «хорошо сделанного» колебательного контура. Добротность контура - это отношение тока, протекающего через реактивный элемент, к току, протекающему через активный элемент контура. В резонансном колебательном контуре можно получить величину добротности от 30 до 200. При этом, через реактивные элементы: индуктивность и емкость протекают токи, намного больше, чем ток от источника. Эти большие «реактивные» токи не покидают пределов контура, т.к. они противофазны, и сами себя компенсируют, но они реально создают мощное магнитное поле, и могут «работать», например в эффективность которых зависит от резонансного режима работы

Проанализируем работу резонансного контура в симуляторе http://www.falstad.com/circuit/circuitjs.html (бесплатная программа)

Правильно построеннный резонансный контур (резонанс нужно строить, а не собирать из того что оказалось под рукой ) потребляет от сети лишь несколько ватт, при этом в колебательном контуре имеем киловаты реактивной энергии, которые можно снять для отопления дома или теплицы при помощи индукционного котла или при помощи одностороннего трансформатора

Например, имеем домашнюю сеть 220 вольт, 50 Гц. Задача: получить на индуктивности в параллельном резонансном колебательном контуре ток величиной в 70 Ампер

Закон Ома для переменного тока для цепи с индуктивностью

I = U / X L , где X L - индуктивное сопротивление катушки

Знаем, что

X L = 2πfL, где f - частота 50 Гц, L - индуктивность катушки (в Генри)

откуда найдем индуктивность L

L = U / 2πfI = 220 вольт / 2 3,14 * 50 Гц 70 Ампер = 0.010 Генри (10 мили Генри или 10mH).

Ответ: чтобы получить в параллельном колебательном контуре ток 70 Ампер, необходимо сконструировать катушку с индуктивностью 10 мили Генри.

По формуле Томсона

fрез = 1 / (2π √ (L C)) находим величину емкости конденсатора для данного колебательного контура

С = 1 / 4п 2 Lf 2 = 1 / (4 (3,14 3,14) * 0,01 Генри (50 Гц 50 Гц)) = 0,001014 Фарад (или 1014 микро Фарад, или 1,014 мили Фарад или 1mF)

Потребление от сети данного параллельного резонансного автоколебательного контура составит лишь 6,27 Ватт (см. рисунок ниже)

24000 ВА реактивной мощности при потреблении 1300 Вт Диод перед резонансным контуром

Вывод: диод перед резонансным контуром снижает потребление от сети в 2 раза, диоды внутри резонансного контура снижают потребление ещё в 2 раза. Общее снижение потребляемой мощности в 4 раза!

В заключение:

Параллельный резонансный контур в 10 раз увеличивает реактивную мощность!

Диод перед резонансным контуром снижает потребление от сети в 2 раза,

Диоды внутри резонансного контура дополнительно снижают потребление в 2 раза.

Асимметричный трансформатор имеет две катушки L2 и Ls.

Например, трансформатор изображенный ниже - это разделительный трансформатор 220/220 изготовленный по принципу асимметричного.

Если на Ls подать 220 вольт, то на L2 снимем 110 вольт.

Если на L2 подать 220 вольт, то на Ls снимем 6 вольт.

Асимметрия в передаче напряжения налицо.

Этот эффект можно использовать в схеме Резонансного усилителя мощности Громова/Андреева, заменяя магнитный экран на асимметричный трансформатор

Секрет усиления тока в асимметричном трансформаторе заключается в следующем:

Если через множество асимметричных трансформаторов пропустить электромагнитный поток, то все они не будут влиять на этот поток, т.к. любой из асимметричных трансформаторов не влияет на поток. Реализацией такого подхода является набор дросселей на Ш-образных сердечниках и установленных вдоль оси внешнего воздействующего поля, полученного от катушки Ls.

Если вторичные катушки L2 трансформаторов затем соединим параллельно, то получим усиление тока.

В результате: получаем набор асимметричных трансформаторов организованных в стек:

Для выравнивания поля на краях Ls, могут быть организованы дополнительные витки по её концам.

Катушки изготовлены из 5 секций, на ферритовых сердечниках Ш - типа с проницаемостью 2500, с использованием провода в пластиковой изоляции.

Центральные трансформаторные секции L2 имеют по 25 витков, а крайние трансформаторы 36 витков (для выравнивания наводимого в них напряжения).

Все секции соединены параллельно.

Внешняя катушка Ls имеет дополнительные витки для выравнивания магнитного поля на её концах), при намотке LS была использована однослойная обмотка, число витков зависело от диаметра провода. Усиления тока для этих конкретных катушек - 4-х кратное.

Изменение индуктивности Ls составляет 3% (если L2 закорочена для имитации тока во вторичке (т.е. как-бы к ней подключена нагрузка)

Чтобы избежать потери половины потока магнитной индукции первичной обмотки в незамкнутом магнитопроводе асимметричного трансформатора, состоящем из n-количества Ш-образных или П- образных дросселей, его можно замкнуть, как показано ниже

0. Резонансный генератор свободной энергии. Избыточная мощность 95 Вт на обмотке съёма достигается использованием 1) резонанса напряжений в обмотке возбуждения и 2) резонанса тока в резонансном контуре. Частота 7,5 кГц. Первичное потребление 200 мА, 9 Вольт видео1 и видео2

1. Устройства получения свободной энергии. Патрик Дж. Келли ссылка

Клацалка по Романову https://youtu.be/oUl1cxVl4X0

Настройка частоты Клацалки по Романову https://youtu.be/SC7cRArqOAg

Модуляция НЧ сигала ВЧ сигналом на пуш-пулл ссылка

Электрический резонанс

В колебательном контуре на рисунке емкость С, индуктивность L и сопротивление R включены последовательно с источником ЭДС.

Резонанс в таком контуре называется последовательным резонанском напряжений. Его характерная черта - напряжения на емкости и индуктивности при резонансе значительно больше внешней ЭДС. Последователный резонансный контур как бы усиливает напряжение.

Свободные электрические колебания в контуре всегда затухают. Для получения незатухающих колебаний необходимо пополнять энергию контура с помощью внешней ЭДС.

Источником ЭДС в контуре служит катушка L, индуктивно связанная с выходным контуром генератора электрических колебаний.

Таким генератором может служить электрическая сеть с постоянной частотой f = 50 Hz.

Генератор создает в катушке L колебательного контура некоторую ЭДС.

Каждой величине емкости конденсатора С соответствует своя собственная частота колебательного контура

Которая меняется с изменением емкости конденсатора С. При этом частота генератора остается постоянной.

Таким образом, чтобы возможен был резонанс соответственно частоте подбирают индуктивность L и емкость С.

Если в колебательном контуре 1 включены три элемента: емкость C, индуктивность L и сопротивление R, то как же они влияют на амплитуду тока в цепи все вместе?

Электрические свойства контура определяются его резонансной кривой.

Зная резонансную кривую мы сможем заранее сказать какой амплитуды достигнут колебания при самой точной настройке (точка Р) и как повлияет на ток в контуре изменение емкости С, индуктивности L и активного сопротивления R. Поэтому задача - построить по данным контура (емкости, индуктивности и сопротивлению) его резонансную кривую. Научившись, мы сможем заранее представить, как себя будет вести контур с любыми значениями С, L и R.

Наш опыт в следующем: меняем емкость конденсатора С и замечаем по амперметру ток в контуре для каждого значения емкости.

По полученный данным строим резонансную кривую для тока в контуре. По горизонтальной оси будем откладывать для каждого значения С отношение частоты генератора к собственной частоте контура. По вертикальной отложим отношение тока при данной емкости к току при резонансе.

Когда собственная частота контура fo приближается к частоте f внешней ЭДС, ток в контуре достигает своего максимального значения.

При электрическом резонансе не только ток достигает своего максимального значения, но и заряд, а следовательно и напряжение на конденсаторе.

Разберем роль емкости, индуктивности и сопротивления в отдельности, а затем уже всех вместе.

Заев Н.Е., Прямое преобразование тепловой энергии в электрическую. Патент РФ 2236723. Изобретение относится к устройствам преобразования одного вида энергии в другой и может использоваться для получения электроэнергии без затраты топлива за счет тепловой энергии окружающей среды. В отличие от нелинейных конденсаторов - варикондов, изменение (процентное) емкости которых за счет изменения диэлектрической проницаемости незначительно, что не позволяет использовать вариконды (и устройства на их основе) в промышленных масштабах, здесь используются алюминиевые - оксидные, т.е. обычные электролитические конденсаторы. Заряд конденсатора осуществляется однополярными импульсами напряжения, передний фронт которых имеет наклон менее 90°, а задний фронт - более 90°, при этом отношение длительности импульсов напряжения к длительности процесса заряда составляет от 2 до 5, а после окончания процесса заряда формируют паузу, определяемую соотношением Т=1/RC 10-3 (сек), где Т - время паузы, R - сопротивление нагрузки (Ом), С - емкость конденсатора (фарада), после чего осуществляют разряд конденсатора на нагрузку, время которого равно длительности однополярного импульса напряжения. Особенность способа в том, что после окончания разряда конденсатора формируют дополнительную паузу.

Однополярные импульсы напряжения для зарядки электролитического конденсатора могут иметь не только треугольную форму, главное, чтобы передний и задний фронты не были 90°, т.е. импульсы не должны быть прямоугольной формы. При проведении эксперимента использовались импульсы, полученные в результате двухполупериодного выпрямления сигнала сети 50 Гц. (см. ссылку)

Http:="">Показана необходимость изменения внутренней энергии диэлектрика конденсатора (феррита в индуктивности) за цикл «Зарядка-Разрядка» («намагничивание - размагничивание»), если ∂ε/∂E ≠ 0, (∂µ/∂H ≠ 0),

Емкостное сопротивление 1/2πfC зависит от частоты.

На рисунке показан график этой зависимости.

По горизонтальной оси отложена частота f, а по вертикальной - емкостное сопротивление Xc = 1/2πfC.

Мы видим, что высокие частоты (Xc мало) конденсатор пропускает, а низкие (Xc велико) - задерживает.

Влияние индуктивности на резонансный контур

Емкость и индуктивность оказывают на ток в цепи противоположные действия. Пусть вначале внешняя ЭДС заряжает конденсатор. По мере заряда растет напряжение U на конденсаторе. Оно направлено против внешней ЭДС и уменьшает ток заряда конденсатора. Индуктивность наоборот, с уменьшением тока стремится его поддержать. В следующую четверть периода, когда конденсатор разряжается, напряжение на нем стремится увеличить ток заряда, индуктивность же, наоборот, препятствует этому увеличению. Чем больше индуктивность катушки, тем меньшей величины успеет достичь за четверть периода разрядный ток.

Ток в цепи с индуктивностью равен I = U/2πfL. Чем больше индуктивность и частота, тем меньше ток.

Индуктивное сопротивление потому и называется сопротивлением, что оно ограничивает ток в цепи. В катушке индуктивности создается ЭДС самоиндукции, которая мешает току нарастать, и ток успевает нарастать только до некоторой определенной величины i=U/2πfL. При этом электрическая энергия генератора переходит в магнитную энергию тока (магнитное поле катушки). Так продолжается чеверть периода, пока ток не достигнет своего наибольшего значения.

Напряжения на индуктивности и емкости в режиме резонанса равны по величине и, находясь в противофазе, компенсируют друг друга. Таким образом все приложенное к цепи напряжение приходится на ее активное сопротивление

Поэтому полное сопротивление Z последовательно включенных конденсатора и катушки равно разности между емкостным и индуктивным сопротивлением:

Если учесть также активное сопротивление колебательного контура, то формула полного сопротивления примет вид:

Когда емкостное сопротивление конденсатора в колебательном контуре равно индуктивному сопротивлению катушки

то полное сопротивление цепи Z переменному току будет наименьшим:

т.е. когда полное сопротивление резонансного контура равно лишь активному сопротивлению контура, то амплитуда тока I достигает своего максимального значения: И ПРИХОДИТ РЕЗОНАНС.

Резонанс наступает, когда частота внешней ЭДС равна собственной частоте системы f = fo.

Если менять частоту внешней ЭДС или собстенную частоту fo (расстройка) то, чтобы вычислить ток в колебательном контуре при любой расстройке, нам достаточно подставить в формулу значения R, L, C, w и E.

При частотах ниже резонансной часть энергии внешней ЭДС тратится на преодоление возвращающих сил, на преодоление емкостного сопротивления. В следующую четверть периода направление движения совпадает с направлением возвращающей силы, и эта сила отдает источнику энергии, полученную за первую четверть периода. Противодействие со стороны возвращающей силы ограничивает амплитуду колебаний.

При частотах, больших резонансной, основную роль играет инерция (самоиндукция): внешняя сила не успевает за четверть периода ускорить тело, не успевает внести в цепь достаточную энергию.

При резонансной частоте внешней силе легко качать тело, т.к. частота его свободных колебаний и внешняя сила только преодолевают трение (активное сопротивление). В этом случае полное сопротивление колебательного контура равно только его активному сопротивлению Z = R, а емкостное сопротивление Rc и индуктивное сопротивление RL контура равны 0. Поэтому ток в контуре максимален I = U/R

Резонанс - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс - явление, когда при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность.

Добротность - характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе - чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания

Тесла писал в своих дневниках, что ток внутри параллельного колебательного контура в добротность разы больше, чем вне его.

Последовательный резонанс. Резонанс и трансформатор. Фильм 3

Диодный колебательный контур Рассматривается новая схема колебательного контура с применением двух катушек индуктивности, включенных через диоды. Добротность контура возросла примерно вдвое, хотя уменьшилось характеристическое сопротивление контура. Индуктивность уменьшилась вдвое, а емкость увеличилась

Последовательно-параллельным реонансный колебательный контур

Исследования резонанса и добротности RLC-контура

Мы исследовали компьютерную модель RLC-контура в программе «Открытая физика», нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.

В практической части работы исследовали реальный RLC-контур с использованием компьютерной программы «Audiotester». Нашли резонансную частоту контура, на резонансной частоте исследовали зависимость добротности контура от сопротивления и построили графики.

Выводы , сделанные нами в теоретической и практической части работы, совпали полностью.

· резонанс в цепи с колебательным контуром наступает при совпадении частоты генератора f c частотой колебательного контура fo;

· с увеличением сопротивления добротность контура падает. Самая высокая добротность при небольших значениях сопротивления контура;

· самая высокая добротность контура ― на резонансной частоте;

· полное сопротивление контура минимально на резонансной частоте.

· попытка прямым путем снять излишки энергии из колебательного контура приведет к затуханию колебаний.

Применения резонансных явлений в радиотехнике неисчислимы.

Однако, в электротехнике применить резонанс мешают стереотипы и негласные современные законы, накладывающие запреты на применение резонанса для получения Свободной энергии. Самым интересное, что все электростанции уже давно пользуются подобным оборудованием, ведь явление резонанса в электрической сети известно всем электромеханикам, но у них совсем иные цели. Когда явление резонанса возникает, идет выброс энергии, который может превосходить норму в 10 раз, и большинство устройств у потребителей перегорают. После этого индуктивность сети изменяется и резонанс исчезает, но перегоревшие устройства не восстановить. Чтобы избежать этих неудобств, устанавливают антирезонирующие вставки, которые автоматически меняют свою емкость и отводят сеть из опасной зоны как только она окажется близкой к резонансным условиям. Если бы резонанс поддерживался в сети специально, с последующим ослаблением силы тока на выходе с резонансной электроподстанции, то потребление топлива снизилось бы в несколько десятков раз и себестоимость производимой энергии снизилась. Но современная электротехника борется с резонансом, создавая антирезонансные трансформаторы и т.п., а у ее сторонников сложились устойчивые стереотипы относительно параметрического резонансного усиления мощности. Поэтому не все явления резонанса реализованы на практике.

Возьмем книгу «Элементарный учебник физики под редакцией академика Г.С. Ландсберга Том III Колебания, волны. Оптика. Строение атома. – М.: 1975г., 640 с. с илл.» откроем ее на страницах 81 и 82 где приведено описание экспериментальной установки для получения резонанса на частоту городского тока 50 Герц.

Здесь ясно показывается, как можно на индуктивности и емкости получить напряжения в десятки раз большие, чем напряжение источника питания.

Резонанс это накопление энергии системой, т.е. мощность источника не надо увеличивать, система накапливает энергию т.к. не успевает её расходовать. Это делается на добавлении энергии в момент максимальных отклонениях в собственной частоте, система производит выброс энергии и замирает в "мертвой точке" в этот момент подается импульс, происходит добавление энергии в систему, т.к. в данный момент её просто нечем расходовать, и происходит рост амплитуды собственных колебаний, естественно он небесконечный и зависит уже от прочности системы, нужно будет вводить еще одну обратную связь для ограничения накачки, я об этом задумался после взрыва первичной обмотки. Так, если не принимать специальных мер, то мощность, развиваемая резонансом, разрушит элементы установки.

Электрическая схема резонансного усилителя мощности тока промышленной частоты. По Громову.

В резонансном усилителе тока промышленной частоты используется явление ферро-резонанса сердечника трансформатора, а также явление электрического резонанса в последовательном колебательном контуре LC-резонанс. Эффект усиления мощности в последовательном резонансном контуре достигается за счет того, что входное сопротивление колебательного контура при последовательном резонансе является чисто активным, а напряжение на реактивных элементах колебательного контура превышает входное напряжение на величину равную добротности контура Q. Для поддержания незатухающих колебаний последовательного контура в резонансе требуется компенсировать только тепловые потери на активных сопротивлениях индуктивности контура и внутреннем сопротивлении источника входного напряжения.

Структурная схема и состав резонансного усилителя мощности, описанная Громовым Н.Н. в 2006 году, приедена ниже

Входной понижающий трансформатор уменьшает напряжение, но увеличивает ток во вторичной обмотке

Последовательный резонансный контур увеличивает напряжение ссылка

Как известно, при резонансе во вторичке Входного понижающего трансформатора, его потребление тока от сети снижается. ссылка

В результате мы получим большой ток и большое напряжение в резонансном контуре, но при этом очень низкое потребления от сети


В резонансном усилителе тока промышленной частоты нагруженный силовой трансформатор вносит расстройку в последовательный колебательный контур и уменьшает его добротность.

Компенсация расстройки резонанса в колебательном контуре осуществляется введением обратной связи с помошью управляемых магнитных реакторов. В цепи обратной связи осуществляется анализ и геометрическое суммирование составляющих токов вторичной обмотки и нагрузки, формирование и регулирование управляюшего тока.

Цепь обратной связи состоит из: части вторичной обмотки силового транформатора, трансформатор тока, выпрямитель и реостат установки рабочей точки, магнитных реакторов.

Для работы на неизменную (постоянную) нагрузку можно применять упрощенные схемы резонансных усилителей мощности.

Структурная схема упрощенного резонансного усилителя тока промышленной частоты представлена ниже.

Простейший резонансный усилитель мощности состоит всего из четырех элементов.

Назначение элементов такое, как в ранее рассмотренном усилителе. Отличие в том, что в простейшем резонансном усилителе производится ручная настройка в резонанс для конкретной нагрузки.

1. Включить силовой трансформатор 2 в сеть и измерить при заданной нагрузке потребляемый им ток.

2. Измерить активное сопротивление первичной обмотки силового трансформатора 2.

5. Выбрать величину индуктивного сопротивления для регулируемого магнитного реактора равную примерно 20% от индуктивного сопротивления силового трансформатора 2

6. Изготовить регулируемый магнитный реактор, с отводами начиная со средины обмотки до ее конца (чем чаще будут сделаны отводы, тем точнее будет настройка в резонанс).

7. По условию равенства индуктивного и емкостного сопротивлений XL=Xc при резонансе рассчитать значение емкости C, которую необходимо включить последовательно с силовым трансформатором и регулируемым магнитным реактором для получения последовательного резонансного контура.

8. Из условия резонанса, перемножить измеренный потребляемый силовым трансформатором ток на сумму активных сопротивлений первичной обмотки и магнитного реактора, и получить ориентировочное значение напряжения, которое необходимо подать на последовательный резонансный контур.

9. Взять трансформатор, обеспечивающий на выходе, найденное по п.8 напряжение и измеренный по п.1 потребляемый ток (на период настройки Усилителя удобней использовать ЛАТР).

10. Запитать от сети через трансформатор по п.9 резонансный контур - (последовательно соединенные конденсатор, первичную обмотку нагруженного силового трансформатора и магнитный реактор).

11. Изменяя индуктивность магнитного реактора путем переключения отводов, настроить цепь в резонанс при пониженном входном напряжении (для точной настройки можно в небольших пределах изменять емкость конденсатора, подключая параллельно основному, конденсаторы небольшой емкости).

12. Изменяя входное напряжение установить значение напряжения на первичной обмотке силового трансформатора 220 В.

13. Отключить ЛАТР и подключить стационарный понижающий трансформатор с таким же напряжением и током

Область применения резонансных усилителей мощности – стационарные электроустановки. Для мобильных объектов целесообразно применять трансгенераторы на повышенных частотах с последующим преобразованием переменного тока в постоянный.

Метод имеет свои тонкости, которые проще понять по методу механической аналогии. Представим себе процесс заряда обычного конденсатора, без диэлектрика, с двумя пластинами и зазором между ними. При заряде такого конденсатора, его пластины притягиваются друг к другу тем сильнее, чем больше заряд на них. При наличии у пластин конденсатора возможности двигаться, расстояние между ними уменьшится. Это соответствует увеличению емкости конденсатора, т.к. емкость зависит от расстояния между пластинами. Таким образом, «истратив» одно и то же количество электронов, можно получить больше запасенной энергии, если емкость увеличилась.

Представьте, что в ведро емкостью 10 литров наливают воду. Предположим, что ведро резиновое, и в процессе его наполнения, его объем увеличивается, например, на 20%. В итоге, сливая воду, мы получим 12 литров воды, хотя ведро при этом уменьшится, и в пустом виде будет иметь объем 10 литров. Дополнительные 2 литра, каким-то образом, в процессе «наливания воды» были «привлечены из среды», так сказать, «присоединились» к потоку.

Для конденсатора, это означает, что если по мере заряда, емкость увеличивается, то энергия поглощается из среды и преобразуется в избыточную запасаемую потенциальную электрическую энергию. Ситуация для простого плоского конденсатора с воздушным диэлектриком естественная (пластины сами собой притягиваются), а это означает, что мы можем конструировать простые механические аналоги варикондов, в которых избыточная энергия запасается в форме потенциальной энергии упругого сжатия пружины, помещенной между пластинами конденсатора. Этот цикл не может быть такой же быстродействующий, как в электронных устройствах с варикондами, но заряд, на пластинах конденсатора большого размера, может быть накоплен значительный, и устройство может генерировать большую мощность, даже при низкочастотных колебаниях. При разряде, пластины вновь расходятся на исходное расстояние, уменьшая начальную емкость конденсатора (пружина освобождается). При этом должен наблюдаться эффект охлаждения среды. Форма зависимости диэлектрической проницаемости сегнетоэлектрика от напряженности приложенного поля показана на графике Рис. 222.


На начальном участке кривой, диэлектрическая проницаемость, а значит и емкость конденсатора, увеличивается при росте напряжения, а затем она падает. Заряжать емкость надо только до максимальной величины (вершина на графике), иначе теряется эффект. Рабочий участок кривой помечен на графике Рис. 210 серым цветом, изменения напряжения в цикле «заряд – разряд» должны происходить в пределах этого участка кривой. Простой «заряд-разряд» без учета максимальной рабочей точки кривой зависимости проницаемости от напряженности поля не даст ожидаемого эффекта. Эксперименты с «нелинейными» конденсаторами, представляется перспективными для исследования, т.к. в некоторых материалах зависимость диэлектрической проницаемости сегнетоэлектрика от приложенного напряжения позволяет получать не 20%, а 50-ти кратные изменения емкости

Применение ферритовых материалов, по аналогичной концепции, также требует наличия соответствующих свойств, а именно, характерной петли гистерезиса при намагничивании и размагничивании, Рис. 2.

Этими свойствами обладают почти все ферромагнетики, поэтому преобразователи тепловой энергии среды, использующие данную технологию, могут быть подробно экспериментально изучены. Пояснение: «гистерезис», (от греческого hysteresis - запаздывание) – это различная реакция физического тела на внешнее воздействие, в зависимости от того, подвергалось ли это тело ранее тем же воздействиям, или подвергается им впервые. На графике, Рис. 223, показано, что намагничивание начинается с нулевой отметки, достигает максимума, а затем, начинается спад (верхняя кривая). При нулевом внешнем воздействии, отмечается «остаточное намагничивание», поэтому, когда цикл повторяется, то расход энергии меньше (нижняя кривая). При отсутствии гистерезиса, нижняя и верхняя кривые идут вместе. Избыточная энергия такого процесса тем больше, чем больше площадь петли гистерезиса. Н.Е.Заевым было экспериментально показано, что удельная плотность энергии для таких преобразователей составляет примерно 3 кВт на 1 кг ферритового материала, при максимально допустимых частотах циклов намагничивания и размагничивания.

https://youtu.be/ydEZ_GeFV6Y

Приоритеты: заявки Н.Е.Заева на открытие «Охлаждение некоторых конденсированных диэлектриков меняющимся электрическим полем с генерацией энергии» №32-ОТ- 10159; 14 ноября 1979 года http://torsion.3bb.ru /viewtopic.php?id=64 , заявка на изобретение "Способ преобразования тепловой энергии диэлектриков в электрическую", № 3601725/07(084905), 4 июня 1983 года, и «Способ преобразования тепловой энергии ферритов в электрическую», №3601726/25(084904). Метод был запатентован, патент RU2227947, 11 сентября 2002 года.

Нужно добиться, чтобы трансформаторное железо начало хорошо рычать, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтобы железо между ними работало хорошо. Железо должно работать и накачивать энергию, сам по себе электрический резонанс не качает, а железо является стратегическим устройством в этом устройстве.

Комбинированный резонанс обусловлен взаимодействием между спиновым магнитным моментом электрона и полем Е (см. Спин-орбитальное взаимодействие). Комбинированный резонанс был впервые предсказан для зонных носителей заряда в кристаллах, для которых он может превышать по интенсивности ЭПР на 7 - 8 порядков ссылка

Электрическая схема соединений представлена ниже.

Работа этого трансформатора связана с обычной электросетью. Пока я не собираюсь делать самозапитку, но это возможно сделать, надо вокруг него сделать такой же силовой трансформатор, один токовый трансформатор и один магнитный реактор. Все это обвязать и будет самозапитка.. Другой вариант самозапитки - это намотать 12 вольтную съемную вторичную катушку Тр2 на втором транформаторе, далее использовать компютерный ИБП, которого передать 220 Вольт уже на вход

Самое главное сейчас - это просто есть сеть, которая подается на схему, а я просто увеличиваю энергию за счет резонанса и питаю отопительный котел в доме. Это индуктивный котел, который называется ВИН. Мощность котла 5 кВт. Целый год этот котел проработал с моим умным трансформатором. За сеть я плачу как за 200 Вт.

Трансформатор может быть любым (на тороидном или П-образном сердечнике). Просто надо пластины трансформатора хорошо изолировать, покрасить, чтобы токов Фуко в нем было как можно меньше, т.е. чтоб сердечник при работе не грелся вообще.

Просто резонанс дает реактивную энергию, а переводя реактивную энергию в любой элемент потребления она становится активной. Счетчик до трансформатора при этом почти не крутится..

Для поиска резонанса я использую прибор Е7-15 еще советского исполнения. С ним я легко добиваюсь резонанса в любом трансформаторе.

Итак, за суровый зимний месяц я заплатил 450 рублей.

С 1-го трансформатора с тороидальным сердечником на 1 кВт я имею во вторичке 28 ампер и 150 вольт. Но нужна обратная связь через токовый трансформатор. Мотаем катушки: Сделать каркас. Когда первичную намотал по всему периметру в два слоя (проводом с диаметром 2,2 мм c учетом 0,9 витка на 1 вольт, т.е. на 220 Вольт в первичной обмотке получается 0,9 витков/В х 220 В = 200 витков), то магнитный экран положил (из меди или латуни), когда вторичную намотал (проводом с диаметром 3 мм с учетом 0,9 витка на 1 Вольт), то снова магнитный экран положил. На вторичной обмотке 1-го транса, начиная с середины, т.е. с 75 Вольт, я сделал множество выводов петлей (около 60-80 штук, кто сколько сможет, примерно 2 Вольта на вывод). На всей вторичной обмотке 1-го трансформатора нужно получить 150 - 170 Вольт. Для 1 кВт я выбрал емкость конденсатора 285 мкФ (тип используемых пусковых конденсаторов для эл. двигателя на рисунке ниже), т.е. два конденсатора. Если использовать 5 кВт трансформатор, то я буду использовать 3 таких конденсатора (неполярный для переменного тока 100 мкФ 450 Вольт). Проявление неполярности у такого кондера незначительное, чем меньше диаметр и короче баночка, тем лучше неполярность. Лучше выбирать более короткие коденсаторы, побольше количество, но меньшей емкости. Я нашел резонанс на середине выводов вторичной обмотки Т1. В идеале для резонанса замеряете индуктивное сопротивление и емкостное сопротивление контура, они должно быть равны. Вы по звуку услышите как трансформатор начнет сильно гудеть. Синусоида резонанса на осциллографе должна быть идеальной. Существуют разные частотные гармоники резонанса, но при 50 Гц трансформатор гудит в два раза громче, чем при 150 Гц. Из электротехнического инструмента я использовал токовые клещи, которые меряют частоту. Резонанс во вторичке Т1 вызывает резкое понижение тока в его первичной обмотке, который составил всего 120-130 мА. Чтобы не было претензий от сетевой компании, то параллельно первичной обмотке первого трансформатора устанавливаем конденсатор и доводим cos Ф = 1 (по токовым клещам). Напряжение я проверял уже на первичной обмотке Второго трансформатора. Итак, в этом контуре (вторичная обмотка 1-го трансформатора -> первичная обмотка 2-го трансформатора) у меня протекает ток 28 Ампер. 28А х 200В = 5,6 кВт. Эту энергию я снимаю с вторичной обмотки 2-го трансформатора (провод сечением 2,2 мм) и передаю на нагрузку, т.е. в индукционный электро-котел. На 3 кВт диаметр провода вторичной обмотки 2го трансформатора составляет 3 мм

Если хотите получить на нагрузке выходную мощность не 1,5 кВт, а 2 кВт, то сердечник 1го и 2го трансформатора (см габаритный расчет мощности сердечника) должны быть на 5 кВт

У 2го трансформатора (сердечник которого надо также перебрать, покрасить балонной краской каждую пластину, заусенцы убрать, тальком посыпать, чтобы пластины не прилипали друг к другу) надо сначала экран положить потом первичку намотать, потом на первичку 2го трансформатора снова экран положить. Между вторичкой и первичкой все-равно должен быть магнитный экран. Если мы получили напряжение в резонансном контуре 220 или 300 Вольт, то первичку 2го трансформатора нужно расчитать и мотать также на эти же 220 или 300 вольт. Если по рачету 0,9 витка на вольт, то количество витков будет соответственно на 220 или 300 Вольт. Возле электро-котла (в моем случае это индукционный котел ВИМ 1,5 кВт) я ставлю конденсатор, ввожу этот контур потребления в резонанс, то смотрю по току или по COS Ф, чтобы COS Ф был равен 1. Тем самым мощность потребления уменьшается и контур, где у меня крутится мошность 5,6 кВт, разгружаю. Я катушки мотал как в обычом трансформаторе - одна над другой. Конденсатор 278 мкФ. Конденсаторы я беру стартерные или сдвигающие, чтобы они на переменном токе хорошо работали. Резонансный трансформатор от Александра Андреева дает прибавку 1 к 20

Первичную обмотку расчитываем как обычный трансформатор. Когда собрали, то если ток там появится в пределах 1 - 2 Ампер, то лучше разобрать сердечник трансформатора, посмотреть где образуются токи Фуко и снова собрать сердечник (может где-то что-нибудь не докрасили или заусенец торчит. Оставьте трансформатор на 1 час в рабочем состоянии, затем пощупайте пальцами там где нагрелось или пирометром замерили в каком углу греется) Первичную обмотку надо мотать, чтобы она потребляла 150 - 200 мА в холостую.

Цепь обратной связи от вторичной обмотки трансформатора Т2 к первичной обмотке транформатора Т1 необходима для автоматичекой регулировки нагрузки, чтобы резонанс не срывался. Для этого в цепи нагрузки я разместил токовый трансформатор (первичка 20 витков, вторичка 60 витков и там несколько отводов сделал, далее через резистор, через диодный мост и на трансформатор в линию подающую напряжение к 1-му трансформатору (200 витков / на 60-70 витков)

Схема эта есть во всех древних учебниках по электротехнике. Она работает в плазматронах, в усилителях мощности, она в приемнике гама V работает. Температура обеих трансформаторов в работе около 80°С. Переменный резистор - это керамический резистор 120 Ом и 150 Вт, можно реостат школьный нихромовый с ползунком туда поставить. Он тоже нагревается до 60-80°С, поскольку ток через него проходит хороший => 4 Ампер

Смета для изготовления резонансного трансформатора для отопления дома или дачи

Трансформаторы Тр1 и Тр2 = по 5000 руб каждый причем Тр1 и Тр2 трансформатор можно купить в магазине. Он называется медицинский трансформатор. У него первичная обмотка уже заизолирована магнитным экраном от вторичной. http://omdk.ru/skachat_prays В крайнем случае можно купить китайский сварочный трансформатор

Трансформатор тока Тр3 и подстроечный Тр4 = 500 рублей каждый

Диодный мост Д - 50 рублей

Подстроечный резистор R 150 Вт - 150 рублей

Конденсаторы C - 500 рублей

Резонанс в резонансе от Романова https://youtu.be/fsGsfcP7Ags

https:// www.youtube.com /watch?v=snqgHaTaXVw

Цыкин Г.С. - Трансформаторы низкой частоты Ссылка

Резонансный дроссель Андреева на Ш-образном сердечнике от трансформатора. Как дроссель превратить в генератор электроэнергии.

Александр Андреев рассказывает: Это принцип дросселя и трансформатора в одном лице, но он настолько простой, что никто еще не догадался его использовать. Если взять Ш-образный сердечник 3х фазного трансформатора, то Функциональная схема генератора получения дополнительной энергии будет как на рисунке

Чтобы получить больший реактивный ток в резонансном контуре, ты должен трансформатор превратить в дроссель, то есть разорвать сердечник трансформатора полностью (сделать воздушный зазор).

Всего-навсего нужно первой намотать не входную, как обычно мотают, а выходную обмотку, т.е. ту где забирается энергия.

Вторую мотаем резонансную. При этом диаметр провода должен быть в 3 раза толще, чем силовая

В третий слой мотаем входную обмотку, т.е сетевую.

Это условие для того, чтобы резонанс между обмотками гулял.

Чтобы не было тока в первичной обмотке, то трансформатор превращаем в дроссель. Т.е. Ш-образки с одной стороны собираем, а ламельки (пластиночки) с другой стороны собираем. И там выставляем зазор. Зазор должен быть по мощности трансформатора. Если 1 кВт, то ему 5 А в первичной обмотке. Делаем зазор так, чтобы в первичной обмотке было 5А холостого хода без нагрузки. Этого нужно добиться зазором, который изменяет индуктивность обмоток. Потом, когда делаем резонанс ток падает до "0" и тогда уже будешь постепенно нагрузку подключать, и смотреть разницу входа мощности и выхода мощности и тогда халява получится. Я 1-фазным 30 кВт-ым трансформатором добился соотношения 1:6 (в пересчете на мощность 5А - на входе и 30А - на выходе)

Надо постепенно набирать мощность, чтоб не перепрыгнуть барьер халавщины. Т.е. как и в первом случае (с двумя трансформаторами) резонанс существует до определенной мощности нагрузки (меньше можно, но больше нельзя) Этот барьер нужно подбирать вручную. Можно подключать любую нагрузку (активную, индуктивную, насос, пылесос, телевизор, компьютер...) Когда перебор мощности будет, тогда резонанс уходит, тогда резонанс перестает работать в режиме накачки энергии.

По конструкции

Я взял Ш-образный сердечник от французского инвертора 1978 года. Но искать надо сердечник с минимальным содержанием марганца и никеля, а кремний должен быть в пределах 3%. Тогда халявы много будет. Авторезонанс получится. Трансформатор может самостоятельно заработать. Раньше были такие пластины Ш-образные на которых как-будто кристаллы нарисованы. А сейчас появились мягкие пластины, они не хрупкие, в отличие от старого железа, а мягкие и не ломаются. Вот такое старое железо для трансформатора самое оптимальное.

Если делать на торе, то тор нужно в двух местах распиливать, чтобы потом стяжку сделать. Шлифовать распиленный зазор нужно очень хорошо

На Ш-образном 30кВт-ном трансформаторе у меня получился зазор 6 мм, если 1 кВт-ный - то зазор будет где-то 0,8-1,2 мм. В качестве прокладки картон не подойдет. Магнитострикция его раздолбает. Лучше брать стеклотекстолит

Первой мотается обмотка, которая идет на нагрузку, она и все остальные мотаются на центральном стержне Ш-образного трансформатора. Все обмотки мотаются в одну сторону

Подбор конденсаторов для резонансной обмотки лучше делать магазином конденсаторов. Ничего сложного. Нужно добиться, чтобы железо хорошо рычало, т.е возник ферро-резонанас. Не индукционный эффект между емкость и катушкой, а чтоб железо между ними работало хорошо. Железо должно работать и накачивать энергию, сам по себе резонанс не качает, а железо является стратегическим устройством в этом устройстве.

Напряжение в моей резонансной обмотке было 400 В. Но чем больше - тем лучше. По поводу резонанса - нужно соблюдение реактивных сопротивлений между индуктивностью и емкостью, чтобы они были равны. Это та точка, где и когда возникает резонанс. Можно еще сопротивление добавить последовательно.

Из сети идет 50 Гц, которые возбуждают резонанс. Происходит увеличение реактивной мощности, далее с помощью зазора на обкладке в съемной катушке мы превращаем реактивную мощность в активную.

В этом случае я просто собирался упростить схему и перейти от 2х трансформаторной или 3х трансформаторной схемы с обратной связью к дроссельной связи. Вот и упростил до такого варианта, который еще и работает. 30 кВт-ный работает, но нагрузку я могу снимать только 20 кВт, т.к. все остальное - для накачки. Если я буду больше энергии забирать из сети, то он и отдавать будет больше, но уменьшаться будет халява.

Следует назвать еще одно неприятное явление, связанное с дросселями, - все дроссели при работе на частоте 50 Гц создают гудящий звук разной интенсивности. По уровню производимого шума дроссели делятся на четыре класса: с нормальным, пониженным, очень низким и особо низким уровнем шума (в соответствии с ГОСТ 19680 они маркируются буквами Н, П, С и А).

Шум от сердечника дросселя создается магнитострикцией (изменением формы) пластин сердечника, когда магнитное поле проходит через них. Этот шум также известен, как холостой шум, т.к. он не зависит от нагрузки, подаваемой на дроссель или трансформатор. Шум нагрузки возникает только у трансформаторов, к которым подключается в нагрузка, и он добавляется к холостому шуму (шуму сердечника). Этот шум вызывается электромагнитными силами, связанными с рассеиванием магнитного поля. Источником данного шума являются стенки корпуса, магнитные экраны, и вибрация обмоток. Шумы, вызываемые сердечником и обмотками, находятся, в основном, в полосе частот 100-600 Hz.

Магнитострикция имеет частоту вдвое выше частоты подаваемой нагрузки: при частоте 50 Hz, пластины сердечника вибрируют с частотой 100 раз в секунду. Более того, чем выше плотность магнитного потока, тем выше частота нечетных гармоник. Когда же резонансная частота сердечника совпадает с частотой возбуждения, то уровень шума увеличивается еще больше

Известно, что если через катушку протекает большой ток, то материал сердечника насыщается. Насыщение сердечника дросселя может привести к увеличению потерь в материале сердечника. При насыщении сердечника его магнитная проницаемость уменьшается, что приводит к уменьшению индуктивности катушки.

В нашем случае сердечник катушки индуктивности выполнен с воздушным диэлектрическим зазором на пути магнитного потока. Сердечник с воздушным зазором позволяет:

  • исключить насыщение сердечника,
  • уменьшить в сердечнике потери мощности,
  • увеличить ток в катушке и т.д.
  • Выбор дросселя и Характеристики сердечника. Магнитные материалы сердечника состоят из маленьких магнитных доменов (размерами порядка нескольких молекул). Когда внешнее магнитное поле отсутствует, эти домены ориентированы случайным образом. При появлении внешнего поля домены стремятся выравняться по его силовым линиям. При этом происходит поглощение части энергии поля. Чем сильнее внешнее поле, тем больше доменов полностью выравниваются по нему. Когда все домены окажутся ориентированы по силовым линиям поля, дальнейшее увеличение магнитной индукции не будет влиять на характеристики материала, т.е. будет достигнуто насыщение магнитопровода дросселя. По мере того как напряжённость внешнего магнитного поля начинает снижаться, домены стремятся вернуться в первоначальное (хаотичное) положение. Однако некоторые домены сохраняют упорядоченность, а часть поглощённой энергии, вместо того чтобы вернуться во внешнее поле, преобразуется в тепло. Это свойство называется гистерезисом. Потери на гистерезис являются магнитным эквивалентом диэлектрических потерь. Оба вида потерь происходят из-за взаимодействия электронов материала с внешним полем. http:// issh.ru/ content/ impulsnye-istochniki-pitanija/ vybor-drosselja/ kharakteristiki-serdechnika/ 217/

    Расчет воздушного зазора в дросселе не очень точен, т.к. данные производителей о стальных магнитных сердечниках неточны (обычно погрешность составляет +/- 10%). Программа схемотехнического моделирования Micro-cap позволяет довольно точно рассчитать все параметры катушек индуктивности и магнитные параметры сердечника http://www.kit-e.ru/ articles/ powerel/ 2009_05_82.php

    Влияние воздушного зазора на добротность Q дросселя со стальным сердечником. Если частота напряжения, приложенного к дросселю, не изменяется и с введением воздушного зазора в сердечник амплитуда напряжения увеличивается так, что магнитная индукция поддерживается неизменной, то и потери в сердечнике будут сохраняться такими же. Введение воздушного зазора в сердечник вызывает увеличение магнитного сопротивления сердечника обратнопропорционально m∆ (см формулу 14-8) Следовательно для получения той же магнитной индукции намагничивания ток должен соответственно увеличиваться. Добротность Q дросселя можно определять по уравнению

    Для получения большей величины добротности в сердечник дросселя обычно вводят воздушный зазор, увеличивая тем самым ток Im настолько, чтобы выполнялось равенство 14-12. Введение воздушного зазора уменьшает индуктивность дросселя, то высокое значение Q достигается обычно за счет снижения индуктивности (ссылка)

    Отопление от Андреева на резонансном дросселе с Ш-образным сердечником от трансформатора и лампах ДРЛ

    Если использовать лампу ДРЛ, то выделяемой ей тепло можно отбирать. Схема подключения ламп ДРЛ простая.

    Трансформатор, мощностью 3 кВт имеет: три первичные обмотки, три вторичные обмотки и одну резонансную, а также зазор.

    Каждую лампу ДРЛ в первичных обмотках я соединил последовательно. Потом настраивал каждую лампу в резонанс при помощи конденсаторов.

    На выходе трансформатора у меня три выходных обмотки. К ним я тоже последовательно подсоединил лампы и тоже их настраивал в резонанс при помощи блоков из конденсаторов.

    Потом к резонансной обмотке подключал конденсаторы и последовательно с этими конденсаторами я умудрился еще три лампы подключить. Каждая лампа по 400 Вт.

    Я работал с ртутными лампами ДРЛ, а натриевые лампы НаД трудно зажечь. У ртутной лампы начало зажигания около 100 Вольт.

    От искового промежутка в лампе ДРЛ генерируется более высокая частота, которая моделирует частоту сети 50 Гц. Получаем ВЧ модуляцию при помощи искового промежутка лампы ДРЛ для НЧ сигнала в 50Гц от сети.

    Т.о. три лампы ДРЛ потребляя энергию выдают энергию еще для 6 ламп

    Но подобрать резонанс контура - это одно, а подобрать резонанс металла сердечника - это другое. До этого ещё мало кто дошел. Поэтому когда Тесла демонстрировал свою резонансную разрушающую установку, то когда он подбирал частоту для нее, то на всем проспекте начало разворачиваться землятресение. И тогда Тесла молотком разбил свое устройство. Это пример того, как малым устройством можно разрушить большое здание. В нашем случае нужно заставить метал сердечника вибрировать на частоте резонанса, например как от ударов в колокол.

    Основа для ферромагнитного резонанса из книги Уткина "Основы теслатехники"

    Когда ферромагнитный материал помещается в постоянное магнитное поле (например, подмагничивание сердечника трансформатора постоянным магнитом), то сердечник может поглощать внешнее переменное электромагнитное излучение в направлении, перпендикулярном к направлению постоянного магнитного поля на частоте прецессии доменов, что приведет к ферромагнитному резонансу на этой частоте. Приведенная формулировка является наиболее общей и не отражает всех особенностей поведения доменов. Для жестких ферромагнетиков существует явление магнитной восприимчивости, когда способность материала намагничиваться или размагничиваться зависит от внешних воздействующих факторов (например, ультразвука или электромагнитных высокочастотных колебаний). Это явление широко используется при записи в аналоговых магнитофонах на магнитной пленке и называется "высокочастотное подмагничивание". Магнитная восприимчивость при этом резко возрастает. Т.е, намагнитить материал в условиях высокочастотного подмагничивания проще. Это явление можно также рассматривать как разновидность резонанса и группового поведения доменов.

    Это основа для усиливающего трансформатора Тесла.

    Вопрос: какая польза от ферромагнитного стержня в устройствах свободной энергии?

    Ответ: ферромагнитный стержень может изменять намагниченность своего материала вдоль направления магнитного поля без необходимости использования мощных внешних сил.

    Вопрос: правда ли, что резонансные частоты для ферромагнетиков находятся в диапазоне десятков гигагерц?

    Ответ: да, частота ферромагнитного резонанса зависит от внешнего магнитного поля (высокое поле = высокая частота). Но в ферромагнетиках можно получить резонанс без применения какого-либо внешнего магнитного поля, это так называемый "естественный ферромагнитный резонанс". В этом случае магнитное поле определяется внутренней намагниченностью образца. Здесь частота поглощения находится в широкой полосе, из-за большой вариации в возможных условиях намагничивания внутри, и поэтому вы должны использовать широкую полосу частот, чтобы получить ферромагнитный резонанс для всех условий. Здесь ХОРОШО ПОДХОДИТ ИСКРА на искровом разряднике.


    Обыкновенный трансформатор. Никаких хитрых намоток (бифиляром, встречных...) Обыкновенные намотки, кроме одного - отсутствие влияния вторичной цепи на первичную. Это готовый генератор свободной энергии. Ток, который пошёл на насыщение сердечника получили и во вторичной цепи т.е. с прибавкой в 5 раз. Принцип работы трансформатора как генератора свободной энергии: дать ток на первичную для насыщения сердечника в его нелинейном режиме и отдать ток на нагрузку во вторую четверть периода без влияния ее на первичную цепь трансформатора. В обыкновенном трансформаторе это линейный процесс, т.е. мы получаем ток в первичной цепи путем изменения индуктивности во вторичной подключением нагрузки. В данном трансформаторе этого нет, т.е мы без нагрузки получаем ток для насыщения сердечника. Если мы отдали ток 1 А, то мы его и получим на выходе, но только с коэффициентом трансформации таким - какой нам нужен. Все зависит от размеров окна трансформатора. Наматывает вторичную на 300 В или на 1000 В. На выходе получите напряжение с тем током, который вы подали на насыщение сердечника. В первую четверть периода у нас сердечник получает ток на насыщение, во вторую четверть периода этот ток забирает нагрузка через вторичную обмотку трансформатора.


    Частота в районе 5000 Гц на этой частоте сердечник близок к своему резонансу и первичная перестает видеть вторичку. На видео показываю как замыкаю вторичную, а на блоке питания первички не происходит никаких изменений. Данный эксперимент лучше синусом проводить, а не меандром. Вторичную можно мотать хоть на 1000 Вольт, ток во вторичной будет максимум тока, протекающего в первичной. Т.е. если в первичке 1 А, то во вторичной можно выжать тоже 1 А тока с коэффициентом трансформации, например 5. Далее пробую сделать резонанс в последовательном колебательном контуре и загнать его на частоту сердечника. Получится резонанс в резонансе, как показывал Акула0083

    Коммутационный способ возбуждения параметрического резонанса электрических колебаний и устройство для его осуществления.

    Устройство на схеме относится к автономным источникам электропитания, и может найти применение в промышленности, в бытовой технике и на транспорте. Техническим результатом является упрощение и снижение стоимости изготовления.

    Все источники электропитания по своей сути являются преобразователями различных видов энергии (механической, химической, электромагнитной, ядерной, тепловой, световой) в электрическую энергию и реализуют только эти затратные способы получения электрической энергии.

    Эта электрическая схема позволяет создание на основе параметрического резонанса электрических колебаний автономного источника электропитания (генератора), не сложного по конструкции и не дорогого по стоимости. Под автономностью в подразумевается полная независимость этого источника от воздействия сторонних сил или привлечения других видов энергии. Под параметрическим резонансом понимается явление непрерывного возрастания амплитуд электрических колебаний в колебательном контуре при периодических изменениях одного из его параметров (индуктивности или емкости). Эти колебания происходят без участия внешней электродвижущей силы.

    Резонанный трансформатор Степанова А.А. является разновидностью резонансного усилителя мощности. Работа резонансного усилителя состоит:

    1) усиление в высокодобротном колебательном контуре (резонаторе) при помощи параметра Q (добротность колебательного контура), энергии, получаемой от внешнего источника (сети 220 В или генератора накачки);

    2) снятие усиленной мощности с раскачанного колебательного контура в нагрузку так, чтобы ток в нагрузке не влиял (в идеале) или слабо влиял (в реале) на ток в колебательном контуре (Эффект Демона Тесла).

    Несоблюдение одного из этих пунктов не позволит "извлечь из резонансного контура СЕ". Если выполнение 1 пункта особых проблем не вызывает, то выполнение пункта 2 является задачей технически сложной.

    Существуют приёмы, позволяющие ослабить влияние нагрузки на ток в Резонансном колебательном контуре:

    1) использование ферромагнитного экрана между первичкой и вторичкой трансформатора, как в патенте Тесла № US433702;

    2) использование намотки бифиляром Купера. Индуктивные бифилярки Теслы часто путают с безиндуктивными бифилярками Купера, где ток в 2х соседних витках течёт в разных направлениях (и которые, по сути, являются статическими усилителями мощности и рождают ряд аномалий, в том числе и антигравитационные эффекты) Видео по ссылке В случае односторонней магнитной индукции, подключение нагрузки к вторичной катушке не влияет на ток потребления первичной катушки.

    Трансформатор, доработанный для решения этой задачи, изображен на фиг.1 с различными типами магнитопроводов: a - стержневой, b - броневой, с - на ферритовых чашках. Все проводники первичной обмотки 1 находятся только с внешней стороны магнитопровода 2. Его участок внутри вторичной обмотки 3 всегда замкнут огибающей магнитной цепью.

    В штатном режиме при подаче переменного напряжения на первичную обмотку 1 весь магнитопровод 2 намагничивается вдоль ее оси. Примерно половина потока магнитной индукции проходит через вторичную обмотку 3, вызывая на ней выходное напряжение. При обратном включении переменное напряжение подается на обмотку 3. Внутри нее возникает магнитное поле, которое замыкается огибающей ветвью магнитопровода 2. В итоге, изменение суммарного потока магнитной индукции через обмотку 1, опоясывающую весь магнитопровод, определяется только слабым рассеянием за его пределы.

    5) использование "ферроконцентраторов" - магнитопроводов с переменным сечением, в которых магнитный поток, создаваемый первичкой, при прохождении по магнитопроводу, сужается (концентрируется) перед прохождением внутри вторички;

    6) множество других технических решений, например патент Степанова А.А.(N° 2418333) или приёмы, описанные у Уткина в "Основах Теслатехники". Можно так же посмотреть описание трансформатора Е.М.Ефимова (http:// www.sciteclibrary.ru/ rus/ catalog/ pages/ 11197.html, http:// www.sciteclibrary.ru/ rus/ catalog/ pages/ 11518.html), статью А.Ю. Далечина "Трансформатор реактивной энергии" или "Резонансный усилитель мощности тока промышленной частоты" Громова Н.Н.

    7) Однонаправленный трансформатор видео

    Эти изобретения сводятся к решению одной задачи - "сделать, чтобы энергия из первички во вторичку передавалась полностью, а обратно не передавалась вообще" - обеспечить режим одностороннего перетекания энергии.

    Решение этой задачи - ключ к построению резонансных сверхединичных СЕ-трансформаторов.

    Видимо Степанов придумал ещё один способ снятия энергии с резонансного колебательного контура - на этот раз с помощью той самой странной цепи, состоящей из трансформатора тока и диодов. .

    Колебательный контур в режиме резонанса токов, является усилителем мощности.

    Большие токи, циркулирующие в контуре, возникают за счет мощного импульса тока от генератора в момент включения, когда заряжается конденсатор. При значительном отборе мощности от контура эти токи «расходуются», и генератору вновь приходится отдавать значительный ток подзарядки

    Колебательный контур с низкой добротностью и катушкой небольшой индуктивности слишком плохо "накачивается" энергией (запасает мало энергии), что понижает КПД системы. Также катушка с маленькой индуктивностью и на низких частотах обладает малым индуктивным сопротивлением, что может привести к "короткому замыканию" генератора по катушке, и вывести генератор из строя.

    Добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью плохо «запасает» энергию. Для повышения добротности колебательного контура используют несколько путей:

    Повышение рабочей частоты: из формул видно, что выходная мощность прямо пропорциональна частоте колебаний в цепи (количеству импульсов в секунду) Если вдвое увеличить частоту импульсов, то выходная мощность увеличивается вдвое

    По возможности увеличить L и уменьшить C. Если увеличить L с помощью увеличения витков катушки или увеличения длины провода нельзя, используют ферромагнитные сердечники или ферромагнитные вставки в катушку; катушка обклеивается пластинками из ферромагнитного материала и т.п.

    Рассмотрите временные характеристики последовательного LC контура. В резонансе ток отстает от напряжения на 90°. Токовым трансформатором я использую токовую состовляющую, таким образом я не вношу изменения в контур, даже при полной нагрузке токового трансформатора. При изменении нагрузки, происходит компенсация индуктивностей (другого слова не подобрал) контур сам себя подстраивает не давая уйти с резонансной частоты.

    К примеру, катушка на воздухе 6 витков медной трубки 6 мм2, диаметр каркаса 100мм, и ёмкость в 3 мкф имеет резонансную частоту примерно 60 кГц. На этом контуре можно разогнать до 20 кВт реактива. Соответственно токовый трансформатор должен иметь габаритную мощность не менее 20 кВт. Можно применять что угодно. Кольцо - хорошо, но при таких мощностях больше вероятность ухода сердечника в насыщение, поэтому необходимо вводить зазор в сердечник , а это проще всего с ферритами от ТВСа. На этой частоте один сердечник способен рассеять около 500 Вт, значит необходимо 20000\500 не менее 40 сердечников.

    Важное условие - создать резонанс в последовательном LC контуре. Процессы при таком резонансе хорошо описаны. Важный элемент - это токовый трансформатор. Его индуктивность должна быть не более 1/10 индуктивности контура. Если больше, резонанс будет срываться. Следует также учесть коэффициенты трансформации, согласующего и токового трансформаторов. Первый рассчитывается исходя из импедансов (полных сопротивлений) генератора и колебательного контура. Второй зависит от напряжения развиваемого в контуре. На предыдущем примере в контуре 6 витков развилось напряжение в 300 вольт. Получается на виток 50 вольт. Токовый транс использует 0,5 витков, значит в его первичке будет 25 вольт, следовательно вторичка должна содержать 10 витков, для достижения напряжения в 250 вольт на выходе.

    Все рассчитывается по классическим схемам. Как вы будете возбуждать резонансный контур неважно. Важная часть - это согласующий трансформатор, колебательный контур, и токовый трансформатор для съема реактивной энергии.

    Если вы хотите данный эффект на трансформаторе Тесла (далее ТТ) реализовать. Вам необходимо знать и иметь опыт по построению ВЧ цепей. В ТТ при 1/4 волновом резонансе, так же происходит разделение тока от напряжения на 90°. Сверху напряжение, снизу ток. Если проведете аналогию с представленной схемой и ТТ, увидите сходство, как накачка так и съем происходит на стороне возникновения токовой составляющей. Аналогично работает и устройство Смита. Поэтому не рекомендую начинать с ТТ или Смита будучи не опытным. А данное устройство можно буквально на коленке собрать, при этом имея только один тестер. Как правильно в одном из постов заметила lazj "Капанадзе осциллограф из-за угла видел."

    Таким образом происходит модуляция несущей. А такое решение - транзисторы ведь с однополярным током могут работать. Если на них подать не выпрямленное, то пройдет только одна полуволна.

    модуляция нужна для того, чтобы потом не мучиться с преобразованием в 50 Гц стандарт.

    Для получения на выходе синуса 50 гц. Без неё потом можно будет питать только активную нагрузку (лампочки накаливания, тены...). Двигатель, или трансформатор на 50 гц работать не будут, без такой модуляции.

    Задающий генератор я обозначил прямоугольником. Он стабильно выдает частоту, на которой резонирует LC контур. Пульсирующее изменение напряжения (синус) подается только на выходные ключи. Резонанс колебательного контура от этого не срывается, просто в каждый момент времени в контуре крутиться больше или меньше энергии, в такт синуса. Это как если качели толкать, с большей или меньшей силой, резонанс качелей не меняется, меняется только энергия.

    Резонанс можно сорвать только нагрузив его непосредственно, т к меняются параметры контура. В данной схеме нагрузка не влияет на параметры контура, в ней происходит автоподстройка. Нагружая токовый трансформатор, с одной стороны меняются параметры контура, а с другой стороны меняется магнитная проницаемость сердечника трансформатора, уменшая его индуктивность. Таким образом для резонанского контура нагрузка "невидна". И резонансный контур как совершал свободные колебания так и продолжает совершать. Меняя напряжение питания ключей (модуляция), меняется только амлитуда свободных колебаний и все. Если есть осциллограф и генератор, проведите эксперимент, с генератора подайте на контур частоту резонанса контура, затем меняйте амплитуду входного сигнала. И увидете что нет никакого срыва.

    Да, согласующий трансформатор и трансформатор тока построены на ферритах, резонансный контур воздушный. Чем больше в нем витков тем выше добротность, с одной стороны. А с другой выше сопротивление, что снижает конечную мощность, потому как основная мощность уходит на нагрев контура. Поэтому следует искать компромис. По поводу добротности. Даже имея добротность 10 при 100 Вт входной мощности 1000 Вт будет реактива. Из них 900 Вт можно снять. Это при идиальных условиях. В реале 0,6-0,7 от реактива.

    Но это все мелочи, по сравнению с тем, что не надо закапывать радиатор отопления в землю и париться с заземлением! А то Капанадзе пришлось даже на острове разориться на устройство заземления! А оно оказывается и вовсе не нада! Реактивная энергия прет и без рабочего заземления. Это бесспорно. А вот со сьемным трансформатором тока - придется повозится... Не так все просто. Обратное влияние имеется. Степанов как-то это решил, в патенте у него там диоды для этой цели нарисованы. Хотя наличие диодов у Степанова каждый трактует по-своему.

    Степанов в Питере запитывал станки по следующей схеме. Его схема была проста, но мало понимаема

    Трансформатор с короткозамкнутым витком генерирует мощное переменное магнитное поле. Берём феромагнитный стержень с как можно большей проницаемостью, лучше трансформаторное железо, пермаллой, и т.д. Для более яркого проявления эффекта мотаем на нем первичку с подобранным активным максимальным сопротивлением так, чтобы она не сильно нагревалась при питании от генератора в режиме полного КОРОТКОГО ЗАМЫКАНИЯ. После намотки первички делаем вторичку как обычно, по всей поверхности первички, только наглухо замкнутую.

    Можно сделать замкнутый виток в форме трубки длиной с первичку. При включении трансформатора такой короткозамкнутый трансформатор генерирует мощное переменное магнитное поле. При этом сколько бы мы не приставляли по торцам дополнительных сердечников с замкнутыми обмотками - потребление трансформатора не увеличивается. Зато с каждого приставленного сердечника с обмоткой мы имеем нехилую ЭДС. Вторичку основного трансформатора лучше использовать при максимальной нагрузке, чем больше нагрузка, тем больше поле, чем больше поле, тем больше ЭДС на дополнительном сердечнике.

    СКРЫТЫЕ ПОДРОБНОСТИ РАБОТЫ ТРАНСФОРМАТОРА С КОРОТКОЗАМНУТЫМ ВИТКОМ.

    Вторичной обмоткой магнитное поле вообще не индуцируется. В ней ток как бы вторичен и выполняет роль \СМАЗКИ\ для тока в первичке. Чем лучше смазка, тем больше ток в первичке, но максимум тока упирается в активное сопротивление первички. Отсюда получается, что магнитное поле МП можно брать от короткозамкнутого КЗ трансформатора для его дальнейшего усиления МП- размножения МП- дублирования МП феромагнетиками.

    При поднесении к основному сердечнику с измеряемой обмоткой бокового дополнительного сердечника индуктивность растёт, при поднесении дополнительного сердечника с КЗ обмоткой индуктивность падает. Далее, если индуктивности на основном сердечнике падать уже некуда (близко к активному сопротивлению), то поднесение дополнительного сердечника с корокозамкнутой КЗ обмоткой, никак не влияет на ток в первичке, но поле-то есть!

    Трансформатор с короткозамкнутым КЗ витком.Опыт

    Отсюда есть ток в дополнительной обмотке. Так вытаскивается магнитная энергия, и часть ее конвертируется в ток. Это всё очень приближенно, т.е. мы сначала натыкаемся на убытки К.З. в трансформаторе и на этом останавливаемся, не обращая внимания на возросшее магнитное поле согласно току в первичке, а поле - это то, что нам надо.

    Объяснение. Берём обычный стержневой электромагнит, запитываем положенным ему напряжением, видим плавное нарастание тока и магнитного поля, в конце концов ток постоянен и магнитное поле тоже. Теперь первичку окружаем сплошным проводящим экраном, подключаем снова, видим нарастание тока и магнитного поля до тех же значений, только раз в 10-100 быстрее. Можно представить во сколько раз можно повысить и частоту управления таким магнитом. Также можно сравнить крутизну фронта магнитного поля в этих вариантах, а заодно посчитать затраченную энергию источника для достижения предельного значения магнитного поля. Так что думаю стоит забыть о магнитном поле при К.З. вторички-экрана, его на самом деле нет. Ток во вторичке - это чисто компенсатор, пассивный процесс. Ключевой момент в транс-генераторе это трансформация тока в магнитное поле, усиленное многократно свойствами сердечника..

    Трансформатор с короткозамкнутым витком еще и для отопления. Все знают об импульсе обратной индукции: если мы хорошую индуктивность отключаем от источника, то получим выброс напряжения и соответственно тока. Что на это говорит сердечник - а ничего! Магнитное поле все равно стремительно убывает и надо бы вводить понятие активного и пассивного тока. Пассивный ток не образует своего магнитного поля, если конечно не выводить линии тока относительно магнитного поля сердечника. В противном случае у нас бы получился \вечный электромагнит\,. Возьмем конструктив, \как описано свидетелем конструкции МЕЛЬНИЧЕНКО\. Стержень, а на стержне по торцам две первички, сверху на них алюминиевые кольца (замкнутые полностью или даже с запасом закрывающие обмотку) - так сказать компенсаторы. Съёмная обмотка посредине. Остаётся проверить: был ли стержень сплошным или составным из трёх частей, под первичкой и под съёмной обмоткой? Боковые первички с замкнутыми экранами будут генераторами магнитного поля, а центральная часть сердечника, или отдельный сердечник генерирует своё магнитное поле, которое съёмной катушкой конвертируется в ток. Две катушки по торцам - видимо для создания более равномерного поля в центральной части. Можно сделать и так: Две катушки по торцам - съемные, и посередине экранированная, генераторная, какая из этих конструкций лучше, покажет опыт. Никаких высокоомных экранов, никаких конденсаторов. Ток в экране является реверсом для тока в первичке, а заодно и компенсатором против изменения поля в генерирующих стержнях (от нагрузки в съёмных). Да, съёмная обмотка обычная индуктивная. ТРАНС_ГЕНЕРАТОР не является вечным двигателем, он распределяет энергию среды, но собирает её очень эффективно с помощью поля, и выдает в виде тока - ток всё обратно переводит в пространство, в итоге мы никогда не нарушаем баланс энергий в замкнутом объеме, а пространство специально устроено так, чтобы всё сгладить и равномерно распределить. Самая простая конструкция: стержень-первичка-экран-вторичка _ сколько хочешь. Токи в экране пассивные, снимай не хочу. Так же будут работать типовые трансформаторы, снимаем вторичку, ставим экран, снова вторичка, но побольше, до заполнения окна магнитопровода. Получаем трансформатор КУЛДОШИНА. Но если окно маленькое, может даже не получиться оправдать все затраты. ЧАСТОТУ также надо подбирать экспериментально для максимального КПД. От частоты сильно зависит эффективность. Повысим частоту - сохраним красивое отношение вольт на виток. Можно повысить скважность. Если генератор просаживается, почему просаживается - нет мощности. Надо рассчитывать мощность генератора.

    чтобы не париться включи в розетку. Там напряжение хорошо держится. Потери само собой, рассчитывайте силу тока первички, так чтобы зря энергия не тратилась. То есть, чтобы сердечник насыщался на максимальном токе. А вторичек можно намотать, от жадности сколько хочешь. Ток ведь не увеличивается в первичке. ИМПУЛЬС тока проходит в первичке. При этом она не индуктивная, то есть поле создаётся быстро. А есть поле - есть ЭДС. А так как нет индуктивности, то частоту смело повышаем в 10 раз.

    ЭКРАН делает трансформатор почти полностью не индуктивным, в этом ВСЯ СОЛЬ.

    Эффект найден на стержневом электромагните. Он был запитан от разных источников. Даже импульсами с кондёров. Магнитное поле нарастает мгновенно. Т.е. со вторичной обмотки надо собрать как можно больше энергии.

    В трансформаторе с КЗ экраном практически нет ни одной индуктивной обмотки. Поле от сердечника свободно проникает через любую толщу вторичной съёмной обмотки.

    Виртуально уберите из конструкции трансформатора первичку и экран....

    Это можно сделать, так как на экран и первичку никакие манипуляции со вторичкой в смысле нагрузки никак не влияют. Вы получите стержень из которого идёт генерация переменного магнитного поля, которое никак не остановить. Можете намотать кучу вторичного толстого провода и во всей массе проводника будет ток. Часть его пойдет на восстановление энергии источника, а остальное - ваше. Только опыт покажет вам, что поле, созданное первичкой и стержнем, не остановить никаким экраном, да хоть засунуть всё в проводящий цилиндр вместе с источником и генератором - поле спокойно выходит, и оно будет наводить токи в обмотках сверху цилиндров.

    ЭКРАН ДАЕТ ВЫИГРЫШ В ТОМ, ЧТО СВОДИТ ИНДУКТИВНОСТЬ ВСЕХ ОБМОТОК НА НЕТ, ДАЁТ ВОЗМОЖНОСТЬ РАБОТАТЬ НА ВЫСОКОЙ ЧАСТОТЕ С ТОЙ ЖЕ АМПЛИТУДОЙ ПОЛЯ. А ЭДС ЗАВИСИТ ОТ СКОРОСТИ ИЗМЕНЕНИЯ И СИЛЫ ПЕРЕМЕННОГО МАГНИТНОГО ПОЛЯ.

    Пока нет экрана, никакой трансформатор никогда не заставит феромагнетик отдавать свою энергию по простой причине: энергию отдаёт первичка, а вот когда первичка уже не может отдавать больше своей нормы, только тогда начнётся откачка внутренней энергии ферромагнетика.

    Экран - нулевая точка. Нет экрана - эту точку никогда не перейти. Во вторичке хоть какого объёма все электроны просто плывут как бы по течению магнитного поля. Они плывут пасивно, поля не обгоняют, индуктивности нигде нет. Этот ток называется холодным током . Сердечник будет охлаждаться, если со вторички забирать больше энергии, чем даёт первичка, так же будет забираться энергия всего, что ближе к сердечнику: провода, воздух.

    Вторичка может быть любого объема. ВЕЗДЕ БУДЕΤ ТОК!

    Трансформатор Соколовского МЕ-8_2 Использование обратной ЭДС в трансформаторе с КЗ витком https://youtu.be/HH8VvFeu2lQ Обратная ЭДС катушки индуктивности от Сергей Дейна https://youtu.be/i4wfoZMWcLw

    Понравилась статья? Поделиться с друзьями: